亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DBAN: An improved dual branch attention network combined with serum Raman spectroscopy for diagnosis of diabetic kidney disease

糖尿病 糖尿病肾病 肾功能 泌尿系统 疾病 瓶颈 化学 内科学 医学 计算机科学 内分泌学 嵌入式系统
作者
Xinya Chen,Chen Chen,Xuecong Tian,Liang He,Enguang Zuo,Pei Liu,You Xue,Jie Yang,Cheng Chen,Xiaoyi Lv
出处
期刊:Talanta [Elsevier]
卷期号:266: 125052-125052 被引量:5
标识
DOI:10.1016/j.talanta.2023.125052
摘要

Diabetic kidney disease (DKD) is one of the most common kidney diseases worldwide. It is estimated that approximately 537 million adults worldwide have diabetes, and up to 30%–40% of diabetic patients are at risk of developing nephropathy. The pathogenesis of DKD is complex, and its onset is insidious. Currently, the clinical diagnosis of DKD primarily relies on the increase of urinary albumin and the decrease in glomerular filtration rate in diabetic patients. However, the excretion of urinary albumin is influenced by various factors, such as physical activity, infections, fever, and high blood glucose, making it challenging to achieve an objective and accurate diagnosis. Therefore, there is an urgent need to develop an efficient, fast, and low-cost auxiliary diagnostic technology for DKD. In this study, an improved Dual Branch Attention Network (DBAN) was developed to quickly identify DKD. Serum Raman spectroscopy samples were collected from 32 DKD patients and 32 healthy volunteers. The collected data were preprocessed using the adaptive iteratively reweighted penalized least squares (airPLS) algorithm, and the DBAN was used to classify the serum Raman spectroscopy data of DKD. The model consists of a dual branch structure that extracts features using Convolutional Neural Network (CNN) and bottleneck layer modules. The attention module allows the model to learn features specifically, and lateral connections are added between the dual branches to achieve multi-level and multi-scale fusion of shallow and deep features, as well as local and global features, improving the classification accuracy of the experiment. The results of the study showed that compared to traditional deep learning algorithms such as Artificial Neural Network (ANN), CNN, GoogleNet, ResNet, and AlexNet, our proposed DBAN classification model achieved 95.4% accuracy, 98.0% precision, 96.5% sensitivity, and 97.2% specificity, demonstrating the best classification performance. This is the best method for identifying DKD, and has important reference value for the diagnosis of DKD patients, as well as improving the accuracy of medical auxiliary diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
SciGPT应助carrieschen采纳,获得10
14秒前
天天快乐应助Gummybear采纳,获得10
19秒前
gby2018完成签到,获得积分10
36秒前
zqq完成签到,获得积分0
40秒前
44秒前
Gummybear完成签到,获得积分10
44秒前
皮皮球完成签到 ,获得积分10
47秒前
Gummybear发布了新的文献求助10
49秒前
王者归来完成签到,获得积分10
58秒前
恶恶么v发布了新的文献求助10
1分钟前
华仔应助阿尼亚采纳,获得10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
1分钟前
fleeper发布了新的文献求助10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
1分钟前
1分钟前
carrieschen发布了新的文献求助10
1分钟前
2分钟前
星辰发布了新的文献求助10
2分钟前
carrieschen完成签到,获得积分10
2分钟前
星辰完成签到,获得积分10
2分钟前
金钰贝儿完成签到,获得积分10
2分钟前
2分钟前
2分钟前
anbiii完成签到 ,获得积分10
2分钟前
阿尼亚发布了新的文献求助10
2分钟前
Orange应助clyde凌丫采纳,获得10
3分钟前
3分钟前
儒雅的雁山完成签到 ,获得积分10
3分钟前
天天快乐应助lbjcp3采纳,获得30
3分钟前
星辰大海应助fleeper采纳,获得10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
超级的代柔完成签到,获得积分10
4分钟前
4分钟前
黄青青完成签到,获得积分10
4分钟前
无限毛豆发布了新的文献求助10
4分钟前
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795221
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301468
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146