亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DBAN: An improved dual branch attention network combined with serum Raman spectroscopy for diagnosis of diabetic kidney disease

糖尿病 糖尿病肾病 肾功能 泌尿系统 疾病 瓶颈 化学 内科学 医学 计算机科学 内分泌学 嵌入式系统
作者
Xinya Chen,Chen Chen,Xuecong Tian,Liang He,Enguang Zuo,Pei Liu,You Xue,Jie Yang,Cheng Chen,Xiaoyi Lv
出处
期刊:Talanta [Elsevier BV]
卷期号:266: 125052-125052 被引量:7
标识
DOI:10.1016/j.talanta.2023.125052
摘要

Diabetic kidney disease (DKD) is one of the most common kidney diseases worldwide. It is estimated that approximately 537 million adults worldwide have diabetes, and up to 30%–40% of diabetic patients are at risk of developing nephropathy. The pathogenesis of DKD is complex, and its onset is insidious. Currently, the clinical diagnosis of DKD primarily relies on the increase of urinary albumin and the decrease in glomerular filtration rate in diabetic patients. However, the excretion of urinary albumin is influenced by various factors, such as physical activity, infections, fever, and high blood glucose, making it challenging to achieve an objective and accurate diagnosis. Therefore, there is an urgent need to develop an efficient, fast, and low-cost auxiliary diagnostic technology for DKD. In this study, an improved Dual Branch Attention Network (DBAN) was developed to quickly identify DKD. Serum Raman spectroscopy samples were collected from 32 DKD patients and 32 healthy volunteers. The collected data were preprocessed using the adaptive iteratively reweighted penalized least squares (airPLS) algorithm, and the DBAN was used to classify the serum Raman spectroscopy data of DKD. The model consists of a dual branch structure that extracts features using Convolutional Neural Network (CNN) and bottleneck layer modules. The attention module allows the model to learn features specifically, and lateral connections are added between the dual branches to achieve multi-level and multi-scale fusion of shallow and deep features, as well as local and global features, improving the classification accuracy of the experiment. The results of the study showed that compared to traditional deep learning algorithms such as Artificial Neural Network (ANN), CNN, GoogleNet, ResNet, and AlexNet, our proposed DBAN classification model achieved 95.4% accuracy, 98.0% precision, 96.5% sensitivity, and 97.2% specificity, demonstrating the best classification performance. This is the best method for identifying DKD, and has important reference value for the diagnosis of DKD patients, as well as improving the accuracy of medical auxiliary diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
勤恳依霜发布了新的文献求助10
15秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
25秒前
英俊的铭应助勤恳依霜采纳,获得30
28秒前
科研小白完成签到 ,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
KongHN发布了新的文献求助30
1分钟前
勤恳依霜发布了新的文献求助30
1分钟前
KongHN完成签到,获得积分10
1分钟前
zyh完成签到 ,获得积分10
2分钟前
大模型应助勤恳依霜采纳,获得30
2分钟前
Orange应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
4分钟前
乐乐应助爱撒娇的沛凝采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
jiyuehan666发布了新的文献求助10
6分钟前
勤恳依霜发布了新的文献求助30
6分钟前
无花果应助jiyuehan666采纳,获得10
6分钟前
研友_VZG7GZ应助勤恳依霜采纳,获得10
6分钟前
clock完成签到 ,获得积分10
6分钟前
沙海沉戈完成签到,获得积分0
7分钟前
Kelly飞啊应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
handsomezzg完成签到,获得积分10
8分钟前
KINGAZX完成签到 ,获得积分10
8分钟前
正直夜安完成签到 ,获得积分10
9分钟前
淡淡的白羊完成签到 ,获得积分10
10分钟前
10分钟前
herschelwu发布了新的文献求助10
10分钟前
Diligency完成签到 ,获得积分10
10分钟前
Tiger完成签到,获得积分10
10分钟前
11分钟前
11分钟前
777发布了新的文献求助10
11分钟前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712936
求助须知:如何正确求助?哪些是违规求助? 3261027
关于积分的说明 9916189
捐赠科研通 2974585
什么是DOI,文献DOI怎么找? 1631122
邀请新用户注册赠送积分活动 773840
科研通“疑难数据库(出版商)”最低求助积分说明 744426