DBAN: An improved dual branch attention network combined with serum Raman spectroscopy for diagnosis of diabetic kidney disease

糖尿病 糖尿病肾病 肾功能 泌尿系统 疾病 瓶颈 化学 内科学 医学 计算机科学 内分泌学 嵌入式系统
作者
Xinya Chen,Chen Chen,Xuecong Tian,Liang He,Enguang Zuo,Pei Liu,You Xue,Jie Yang,Cheng Chen,Xiaoyi Lv
出处
期刊:Talanta [Elsevier BV]
卷期号:266: 125052-125052 被引量:13
标识
DOI:10.1016/j.talanta.2023.125052
摘要

Diabetic kidney disease (DKD) is one of the most common kidney diseases worldwide. It is estimated that approximately 537 million adults worldwide have diabetes, and up to 30%–40% of diabetic patients are at risk of developing nephropathy. The pathogenesis of DKD is complex, and its onset is insidious. Currently, the clinical diagnosis of DKD primarily relies on the increase of urinary albumin and the decrease in glomerular filtration rate in diabetic patients. However, the excretion of urinary albumin is influenced by various factors, such as physical activity, infections, fever, and high blood glucose, making it challenging to achieve an objective and accurate diagnosis. Therefore, there is an urgent need to develop an efficient, fast, and low-cost auxiliary diagnostic technology for DKD. In this study, an improved Dual Branch Attention Network (DBAN) was developed to quickly identify DKD. Serum Raman spectroscopy samples were collected from 32 DKD patients and 32 healthy volunteers. The collected data were preprocessed using the adaptive iteratively reweighted penalized least squares (airPLS) algorithm, and the DBAN was used to classify the serum Raman spectroscopy data of DKD. The model consists of a dual branch structure that extracts features using Convolutional Neural Network (CNN) and bottleneck layer modules. The attention module allows the model to learn features specifically, and lateral connections are added between the dual branches to achieve multi-level and multi-scale fusion of shallow and deep features, as well as local and global features, improving the classification accuracy of the experiment. The results of the study showed that compared to traditional deep learning algorithms such as Artificial Neural Network (ANN), CNN, GoogleNet, ResNet, and AlexNet, our proposed DBAN classification model achieved 95.4% accuracy, 98.0% precision, 96.5% sensitivity, and 97.2% specificity, demonstrating the best classification performance. This is the best method for identifying DKD, and has important reference value for the diagnosis of DKD patients, as well as improving the accuracy of medical auxiliary diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ii发布了新的文献求助30
刚刚
Andema发布了新的文献求助10
刚刚
刚刚
史克珍香完成签到 ,获得积分10
1秒前
3秒前
栗子发布了新的文献求助10
3秒前
lantZa完成签到,获得积分10
4秒前
5秒前
独孤阳光完成签到,获得积分10
5秒前
思源应助乐观的凝梦采纳,获得10
6秒前
DT发布了新的文献求助10
6秒前
研友_VZG7GZ应助轻松的代云采纳,获得10
7秒前
隐形曼青应助qingjiu采纳,获得10
7秒前
慕青应助机灵夜云采纳,获得10
8秒前
caojj发布了新的文献求助10
8秒前
brren发布了新的文献求助10
8秒前
FIN应助整齐荟采纳,获得30
9秒前
乐观小之应助整齐荟采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
CodeCraft应助coolplex采纳,获得10
10秒前
让我毕业完成签到,获得积分10
11秒前
11秒前
俏皮蜜蜂发布了新的文献求助10
11秒前
Andema完成签到,获得积分10
12秒前
科研通AI2S应助昂口3采纳,获得10
12秒前
生动元蝶发布了新的文献求助10
13秒前
三年半完成签到,获得积分10
13秒前
13秒前
迷路曼雁完成签到,获得积分10
13秒前
13秒前
lily发布了新的文献求助10
14秒前
gentille发布了新的文献求助10
14秒前
斯文败类应助晶镓万岁采纳,获得10
14秒前
星辰大海应助彭希帆采纳,获得10
15秒前
亮亮发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344