A Matching Algorithm with Reinforcement Learning and Decoupling Strategy for Order Dispatching in On-Demand Food Delivery

强化学习 解耦(概率) 匹配(统计) 计算机科学 订单(交换) 食物运送 人工智能 按需 数学优化 机器学习 数学 工程类 业务 营销 控制工程 统计 多媒体 财务
作者
Jingfang Chen,Ling Wang,Zixiao Pan,Yuting Wu,Jie Zheng,Xuetao Ding
出处
期刊:Tsinghua Science & Technology [Tsinghua University Press]
卷期号:29 (2): 386-399 被引量:9
标识
DOI:10.26599/tst.2023.9010069
摘要

The on-demand food delivery (OFD) service has gained rapid development in the past decades but meanwhile encounters challenges for further improving operation quality. The order dispatching problem is one of the most concerning issues for the OFD platforms, which refer to dynamically dispatching a large number of orders to riders reasonably in very limited decision time. To solve such a challenging combinatorial optimization problem, an effective matching algorithm is proposed by fusing the reinforcement learning technique and the optimization method. First, to deal with the large-scale complexity, a decoupling method is designed by reducing the matching space between new orders and riders. Second, to overcome the high dynamism and satisfy the stringent requirements on decision time, a reinforcement learning based dispatching heuristic is presented. To be specific, a sequence-to-sequence neural network is constructed based on the problem characteristic to generate an order priority sequence. Besides, a training approach is specially designed to improve learning performance. Furthermore, a greedy heuristic is employed to effectively dispatch new orders according to the order priority sequence. On real-world datasets, numerical experiments are conducted to validate the effectiveness of the proposed algorithm. Statistical results show that the proposed algorithm can effectively solve the problem by improving delivery efficiency and maintaining customer satisfaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hzs关闭了hzs文献求助
刚刚
Lucas应助coco采纳,获得10
刚刚
来年完成签到,获得积分10
1秒前
晓晓来了完成签到,获得积分10
1秒前
sunwin完成签到,获得积分10
1秒前
2秒前
3秒前
黄烨发布了新的文献求助10
4秒前
Jacquielin发布了新的文献求助10
4秒前
lxcy0612发布了新的文献求助10
4秒前
5秒前
5秒前
ER完成签到,获得积分10
5秒前
2633148059发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
木木完成签到,获得积分10
8秒前
9秒前
王敬顺发布了新的文献求助10
9秒前
无奈的幻雪完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
jueding应助尹善冰采纳,获得10
12秒前
lyy发布了新的文献求助10
12秒前
梓树发布了新的文献求助10
12秒前
12秒前
沐晨浠完成签到,获得积分10
13秒前
十号完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
英俊的铭应助淑芬采纳,获得10
14秒前
李爱国应助斯文123采纳,获得10
14秒前
王智勇发布了新的文献求助10
14秒前
wanci应助风吹阔叶采纳,获得10
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049