A Matching Algorithm with Reinforcement Learning and Decoupling Strategy for Order Dispatching in On-Demand Food Delivery

强化学习 解耦(概率) 匹配(统计) 计算机科学 订单(交换) 食物运送 人工智能 按需 数学优化 机器学习 数学 工程类 业务 营销 控制工程 统计 多媒体 财务
作者
Jingfang Chen,Ling Wang,Zixiao Pan,Yuting Wu,Jie Zheng,Xuetao Ding
出处
期刊:Tsinghua Science & Technology [Tsinghua University Press]
卷期号:29 (2): 386-399 被引量:5
标识
DOI:10.26599/tst.2023.9010069
摘要

The on-demand food delivery (OFD) service has gained rapid development in the past decades but meanwhile encounters challenges for further improving operation quality. The order dispatching problem is one of the most concerning issues for the OFD platforms, which refer to dynamically dispatching a large number of orders to riders reasonably in very limited decision time. To solve such a challenging combinatorial optimization problem, an effective matching algorithm is proposed by fusing the reinforcement learning technique and the optimization method. First, to deal with the large-scale complexity, a decoupling method is designed by reducing the matching space between new orders and riders. Second, to overcome the high dynamism and satisfy the stringent requirements on decision time, a reinforcement learning based dispatching heuristic is presented. To be specific, a sequence-to-sequence neural network is constructed based on the problem characteristic to generate an order priority sequence. Besides, a training approach is specially designed to improve learning performance. Furthermore, a greedy heuristic is employed to effectively dispatch new orders according to the order priority sequence. On real-world datasets, numerical experiments are conducted to validate the effectiveness of the proposed algorithm. Statistical results show that the proposed algorithm can effectively solve the problem by improving delivery efficiency and maintaining customer satisfaction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路宝发布了新的文献求助10
刚刚
peterfu发布了新的文献求助10
2秒前
Lucas应助利多可欣采纳,获得30
3秒前
CipherSage应助ff采纳,获得10
3秒前
科研通AI2S应助王子星痕采纳,获得10
4秒前
路宝完成签到,获得积分10
5秒前
Ava应助九九采纳,获得10
6秒前
shangxinyu完成签到,获得积分10
7秒前
al完成签到 ,获得积分10
8秒前
wbh完成签到 ,获得积分10
8秒前
yar应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得20
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
三黑猫应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
垚乐应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
FashionBoy应助zhangqy采纳,获得10
10秒前
勤奋的猪完成签到,获得积分10
11秒前
秀丽的夏瑶完成签到,获得积分10
13秒前
bo发布了新的文献求助10
15秒前
17秒前
17秒前
看风景的小熊完成签到,获得积分10
17秒前
19秒前
学时习完成签到,获得积分10
19秒前
赘婿应助黄沙采纳,获得10
20秒前
20秒前
20秒前
24秒前
天天快乐应助罗moumou采纳,获得10
24秒前
25秒前
21发布了新的文献求助10
25秒前
独特手链发布了新的文献求助10
25秒前
zhangqy完成签到,获得积分10
26秒前
赘婿应助霸气的鹰采纳,获得10
26秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115