A Matching Algorithm with Reinforcement Learning and Decoupling Strategy for Order Dispatching in On-Demand Food Delivery

强化学习 解耦(概率) 匹配(统计) 计算机科学 订单(交换) 食物运送 人工智能 按需 数学优化 机器学习 数学 工程类 业务 营销 控制工程 统计 多媒体 财务
作者
Jingfang Chen,Ling Wang,Zixiao Pan,Yuting Wu,Jie Zheng,Xuetao Ding
出处
期刊:Tsinghua Science & Technology [Tsinghua University Press]
卷期号:29 (2): 386-399 被引量:9
标识
DOI:10.26599/tst.2023.9010069
摘要

The on-demand food delivery (OFD) service has gained rapid development in the past decades but meanwhile encounters challenges for further improving operation quality. The order dispatching problem is one of the most concerning issues for the OFD platforms, which refer to dynamically dispatching a large number of orders to riders reasonably in very limited decision time. To solve such a challenging combinatorial optimization problem, an effective matching algorithm is proposed by fusing the reinforcement learning technique and the optimization method. First, to deal with the large-scale complexity, a decoupling method is designed by reducing the matching space between new orders and riders. Second, to overcome the high dynamism and satisfy the stringent requirements on decision time, a reinforcement learning based dispatching heuristic is presented. To be specific, a sequence-to-sequence neural network is constructed based on the problem characteristic to generate an order priority sequence. Besides, a training approach is specially designed to improve learning performance. Furthermore, a greedy heuristic is employed to effectively dispatch new orders according to the order priority sequence. On real-world datasets, numerical experiments are conducted to validate the effectiveness of the proposed algorithm. Statistical results show that the proposed algorithm can effectively solve the problem by improving delivery efficiency and maintaining customer satisfaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Endeavor采纳,获得10
刚刚
刚刚
清风完成签到,获得积分20
1秒前
one发布了新的文献求助10
1秒前
吴天姿完成签到,获得积分10
1秒前
复杂的棒球完成签到,获得积分10
2秒前
电气人发布了新的文献求助10
2秒前
小麻发布了新的文献求助10
2秒前
彭于晏应助舒适香露采纳,获得10
3秒前
3秒前
3秒前
李健的小迷弟应助苗硕恒采纳,获得10
4秒前
5秒前
小石完成签到 ,获得积分10
5秒前
5秒前
little black发布了新的文献求助10
5秒前
Jasper应助干净的烧鹅采纳,获得10
5秒前
ujeec完成签到,获得积分10
6秒前
7秒前
科研通AI6应助Jan采纳,获得10
7秒前
梦想成神完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
科研通AI6应助梵高采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
wzf关闭了wzf文献求助
9秒前
Sssmmmyy完成签到,获得积分10
9秒前
小张同学发布了新的文献求助10
9秒前
粥可温发布了新的文献求助10
9秒前
科研通AI6应助欢乐采纳,获得10
10秒前
张鑫发布了新的文献求助10
10秒前
10秒前
落后悟空发布了新的文献求助10
10秒前
11秒前
有无完成签到,获得积分10
11秒前
11秒前
面壁思过发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546533
求助须知:如何正确求助?哪些是违规求助? 4632336
关于积分的说明 14626455
捐赠科研通 4574000
什么是DOI,文献DOI怎么找? 2507963
邀请新用户注册赠送积分活动 1484586
关于科研通互助平台的介绍 1455755