A Matching Algorithm with Reinforcement Learning and Decoupling Strategy for Order Dispatching in On-Demand Food Delivery

强化学习 解耦(概率) 匹配(统计) 计算机科学 订单(交换) 食物运送 人工智能 按需 数学优化 机器学习 数学 工程类 业务 营销 控制工程 统计 多媒体 财务
作者
Jingfang Chen,Ling Wang,Zixiao Pan,Yuting Wu,Jie Zheng,Xuetao Ding
出处
期刊:Tsinghua Science & Technology [Tsinghua University Press]
卷期号:29 (2): 386-399 被引量:9
标识
DOI:10.26599/tst.2023.9010069
摘要

The on-demand food delivery (OFD) service has gained rapid development in the past decades but meanwhile encounters challenges for further improving operation quality. The order dispatching problem is one of the most concerning issues for the OFD platforms, which refer to dynamically dispatching a large number of orders to riders reasonably in very limited decision time. To solve such a challenging combinatorial optimization problem, an effective matching algorithm is proposed by fusing the reinforcement learning technique and the optimization method. First, to deal with the large-scale complexity, a decoupling method is designed by reducing the matching space between new orders and riders. Second, to overcome the high dynamism and satisfy the stringent requirements on decision time, a reinforcement learning based dispatching heuristic is presented. To be specific, a sequence-to-sequence neural network is constructed based on the problem characteristic to generate an order priority sequence. Besides, a training approach is specially designed to improve learning performance. Furthermore, a greedy heuristic is employed to effectively dispatch new orders according to the order priority sequence. On real-world datasets, numerical experiments are conducted to validate the effectiveness of the proposed algorithm. Statistical results show that the proposed algorithm can effectively solve the problem by improving delivery efficiency and maintaining customer satisfaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当下最好发布了新的文献求助10
1秒前
超帅妙竹完成签到,获得积分10
1秒前
1秒前
浮游应助后知后觉采纳,获得10
1秒前
隐形曼青应助bilin采纳,获得10
2秒前
bobo1129发布了新的文献求助10
2秒前
3秒前
weijiechi完成签到,获得积分10
3秒前
3秒前
3秒前
iNk应助有热心愿意采纳,获得10
4秒前
斯文败类应助有热心愿意采纳,获得10
4秒前
NexusExplorer应助有热心愿意采纳,获得10
4秒前
西八区的Carnivore完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI6应助Auimes采纳,获得10
6秒前
pyh发布了新的文献求助10
6秒前
孔wj发布了新的文献求助10
8秒前
8秒前
9秒前
fzzf发布了新的文献求助30
10秒前
10秒前
10秒前
风清扬应助当下最好采纳,获得10
10秒前
好好学习完成签到,获得积分10
10秒前
11秒前
chaichi发布了新的文献求助10
11秒前
12秒前
DJ发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
大模型应助天真苑睐采纳,获得10
14秒前
啦啦啦发布了新的文献求助10
14秒前
传奇3应助怀瑾采纳,获得10
17秒前
zeng完成签到,获得积分10
18秒前
18秒前
香蕉觅云应助JUSTs0so采纳,获得10
20秒前
程风破浪完成签到,获得积分10
22秒前
搜集达人应助ZXC采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145