已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Matching Algorithm with Reinforcement Learning and Decoupling Strategy for Order Dispatching in On-Demand Food Delivery

强化学习 解耦(概率) 匹配(统计) 计算机科学 订单(交换) 食物运送 人工智能 按需 数学优化 机器学习 数学 工程类 业务 营销 控制工程 统计 多媒体 财务
作者
Jingfang Chen,Ling Wang,Zixiao Pan,Yuting Wu,Jie Zheng,Xuetao Ding
出处
期刊:Tsinghua Science & Technology [Tsinghua University Press]
卷期号:29 (2): 386-399 被引量:9
标识
DOI:10.26599/tst.2023.9010069
摘要

The on-demand food delivery (OFD) service has gained rapid development in the past decades but meanwhile encounters challenges for further improving operation quality. The order dispatching problem is one of the most concerning issues for the OFD platforms, which refer to dynamically dispatching a large number of orders to riders reasonably in very limited decision time. To solve such a challenging combinatorial optimization problem, an effective matching algorithm is proposed by fusing the reinforcement learning technique and the optimization method. First, to deal with the large-scale complexity, a decoupling method is designed by reducing the matching space between new orders and riders. Second, to overcome the high dynamism and satisfy the stringent requirements on decision time, a reinforcement learning based dispatching heuristic is presented. To be specific, a sequence-to-sequence neural network is constructed based on the problem characteristic to generate an order priority sequence. Besides, a training approach is specially designed to improve learning performance. Furthermore, a greedy heuristic is employed to effectively dispatch new orders according to the order priority sequence. On real-world datasets, numerical experiments are conducted to validate the effectiveness of the proposed algorithm. Statistical results show that the proposed algorithm can effectively solve the problem by improving delivery efficiency and maintaining customer satisfaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助感动凡雁采纳,获得10
2秒前
3秒前
3秒前
3秒前
小马甲应助王一一采纳,获得20
4秒前
4秒前
外向雁梅发布了新的文献求助10
4秒前
自信尔竹完成签到,获得积分10
6秒前
别看了完成签到,获得积分10
6秒前
年年发布了新的文献求助10
8秒前
che发布了新的文献求助10
9秒前
Jessica发布了新的文献求助10
10秒前
Lucas应助啊啊啊采纳,获得10
11秒前
我爱吃糯米团子完成签到,获得积分10
11秒前
充电宝应助ernest采纳,获得30
12秒前
rex完成签到,获得积分10
12秒前
13秒前
keep完成签到 ,获得积分10
13秒前
14秒前
左贵辉完成签到,获得积分20
15秒前
大个应助年年采纳,获得10
16秒前
harry完成签到,获得积分10
16秒前
heal发布了新的文献求助10
17秒前
17秒前
18秒前
ernest发布了新的文献求助30
18秒前
19秒前
harry发布了新的文献求助10
19秒前
领导范儿应助lee采纳,获得10
19秒前
19秒前
细腻的谷丝完成签到 ,获得积分20
19秒前
22秒前
23秒前
啊啊啊发布了新的文献求助10
23秒前
极速小鱼发布了新的文献求助10
23秒前
啦啦啦啦发布了新的文献求助10
23秒前
Orange应助灵巧电灯胆采纳,获得10
24秒前
田様应助悲凉的菠萝采纳,获得10
25秒前
zrn完成签到 ,获得积分10
25秒前
123发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663813
求助须知:如何正确求助?哪些是违规求助? 4853007
关于积分的说明 15105807
捐赠科研通 4822042
什么是DOI,文献DOI怎么找? 2581165
邀请新用户注册赠送积分活动 1535358
关于科研通互助平台的介绍 1493722