已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙翠风完成签到,获得积分10
2秒前
科研通AI6应助认真的白易采纳,获得10
2秒前
howky发布了新的文献求助30
2秒前
HL完成签到,获得积分10
3秒前
lw完成签到,获得积分10
4秒前
科研通AI6应助halo1004采纳,获得10
4秒前
5秒前
洁净的雪一完成签到 ,获得积分10
5秒前
开心完成签到,获得积分10
6秒前
Daisylee发布了新的文献求助10
10秒前
美满平松完成签到 ,获得积分10
10秒前
失眠的幻儿给失眠的幻儿的求助进行了留言
11秒前
12秒前
13秒前
14秒前
如来发布了新的文献求助10
14秒前
15秒前
庄冬丽发布了新的文献求助10
18秒前
轻松怜菡完成签到,获得积分10
19秒前
南城花开完成签到 ,获得积分10
19秒前
科研通AI6应助WU采纳,获得10
19秒前
所所应助kiki采纳,获得10
20秒前
坚定的安珊完成签到 ,获得积分10
23秒前
开朗的抽屉完成签到 ,获得积分10
25秒前
帅气寒香完成签到 ,获得积分10
26秒前
wushuang完成签到 ,获得积分10
26秒前
橘子柚子完成签到 ,获得积分10
27秒前
31秒前
科研通AI6应助庄冬丽采纳,获得10
33秒前
33秒前
典雅媚颜完成签到,获得积分20
36秒前
36秒前
37秒前
38秒前
美好的老黑完成签到 ,获得积分10
41秒前
cheng发布了新的文献求助10
41秒前
42秒前
WWW完成签到 ,获得积分10
42秒前
香蕉觅云应助典雅媚颜采纳,获得10
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644244
求助须知:如何正确求助?哪些是违规求助? 4763257
关于积分的说明 15024274
捐赠科研通 4802455
什么是DOI,文献DOI怎么找? 2567446
邀请新用户注册赠送积分活动 1525227
关于科研通互助平台的介绍 1484666