Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋幻天完成签到 ,获得积分10
刚刚
2秒前
lll完成签到,获得积分10
6秒前
研友_LkDm3n发布了新的文献求助10
7秒前
7秒前
Ridley发布了新的文献求助10
8秒前
tang123完成签到,获得积分10
9秒前
英姑应助yyang采纳,获得10
10秒前
DUAN完成签到,获得积分10
12秒前
vvx完成签到,获得积分10
14秒前
14秒前
15秒前
Ridley完成签到,获得积分10
15秒前
15秒前
zyd完成签到,获得积分10
15秒前
16秒前
zjspidany应助Felix采纳,获得10
16秒前
小马甲应助kk采纳,获得10
17秒前
18秒前
今夜无人入眠完成签到,获得积分20
19秒前
现代初珍发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
23秒前
23秒前
炖莲藕关注了科研通微信公众号
24秒前
24秒前
阔达煎蛋发布了新的文献求助10
25秒前
26秒前
峰1992发布了新的文献求助30
27秒前
Joey完成签到 ,获得积分10
28秒前
坦率续发布了新的文献求助10
28秒前
28秒前
kk发布了新的文献求助10
29秒前
思源应助小白采纳,获得10
29秒前
激昂的元芹完成签到,获得积分10
31秒前
bluelemon发布了新的文献求助10
32秒前
炖莲藕发布了新的文献求助10
33秒前
英姑应助缓慢如南采纳,获得10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314052
求助须知:如何正确求助?哪些是违规求助? 2946471
关于积分的说明 8530176
捐赠科研通 2622111
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650804