Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paobashan发布了新的文献求助30
1秒前
虚幻唯雪完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
哚圆圆发布了新的文献求助10
2秒前
3秒前
tianquanbi发布了新的文献求助10
3秒前
李爱国应助eywct采纳,获得10
3秒前
4秒前
4秒前
CipherSage应助熊国开采纳,获得10
4秒前
Sweet完成签到 ,获得积分10
4秒前
gzslwddhjx发布了新的文献求助10
5秒前
Islet发布了新的文献求助10
5秒前
6秒前
6秒前
李爱国应助王雪儿哈哈哈采纳,获得10
7秒前
SciGPT应助llll采纳,获得10
7秒前
9秒前
9秒前
9秒前
9秒前
晚上吃什么完成签到,获得积分10
9秒前
ChemMa发布了新的文献求助10
10秒前
丫丫发布了新的文献求助10
10秒前
易安发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
笨笨忘幽发布了新的文献求助10
12秒前
窦文涛完成签到,获得积分10
12秒前
12秒前
完美世界应助liuying采纳,获得10
13秒前
14秒前
THJJ完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
云赵完成签到,获得积分10
15秒前
斯文败类应助易安采纳,获得10
15秒前
15秒前
CWNU_HAN应助jyk采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300