Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的白玉完成签到,获得积分10
刚刚
月亮完成签到 ,获得积分10
1秒前
zhaiyiying发布了新的文献求助10
1秒前
SciGPT应助快乐的寄容采纳,获得10
1秒前
Superg发布了新的文献求助10
2秒前
2秒前
英俊的铭应助G_Serron采纳,获得10
2秒前
天天发布了新的文献求助10
2秒前
rjhgh完成签到,获得积分10
3秒前
是可可呐发布了新的文献求助10
3秒前
3秒前
小王完成签到,获得积分10
3秒前
4秒前
可爱的函函应助冷空气采纳,获得10
4秒前
4秒前
4秒前
豆豆发布了新的文献求助10
4秒前
欢呼的世立完成签到 ,获得积分10
4秒前
BowieHuang应助婷婷采纳,获得10
4秒前
niNe3YUE应助沉静丹寒采纳,获得10
5秒前
www发布了新的文献求助10
5秒前
202422040716完成签到 ,获得积分10
6秒前
6秒前
英吉利25发布了新的文献求助10
6秒前
BowieHuang应助博ge采纳,获得10
6秒前
7秒前
花填错了地完成签到,获得积分10
7秒前
Bio应助奋斗的苹果采纳,获得30
7秒前
眼睛大世开完成签到,获得积分10
7秒前
科研通AI6应助ppsy采纳,获得30
7秒前
coffeecoffee完成签到,获得积分10
7秒前
Mister_CHEN发布了新的文献求助10
8秒前
9秒前
英俊的铭应助爬不起来采纳,获得10
9秒前
9秒前
vothuong完成签到,获得积分10
10秒前
honey发布了新的文献求助10
10秒前
11秒前
隐形曼青应助Mr_cristle采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581638
求助须知:如何正确求助?哪些是违规求助? 4665844
关于积分的说明 14759151
捐赠科研通 4607754
什么是DOI,文献DOI怎么找? 2528364
邀请新用户注册赠送积分活动 1497652
关于科研通互助平台的介绍 1466547