清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
思源应助甜蜜的丹翠采纳,获得10
1分钟前
li发布了新的文献求助10
1分钟前
搜集达人应助科研通管家采纳,获得30
1分钟前
隐形曼青应助科研通管家采纳,获得20
1分钟前
甜蜜的丹翠完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
cclyfan完成签到,获得积分10
2分钟前
3分钟前
陶醉巧凡完成签到,获得积分10
3分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
iNk应助lawang采纳,获得10
4分钟前
科研通AI2S应助lawang采纳,获得10
4分钟前
Akim应助lawang采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
饺子猫完成签到,获得积分10
5分钟前
5分钟前
lawang完成签到,获得积分10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
6分钟前
7分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬完成签到,获得积分10
7分钟前
平淡卿完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
li发布了新的文献求助10
8分钟前
kasumi完成签到 ,获得积分20
8分钟前
li完成签到,获得积分10
8分钟前
krajicek完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117