Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiushui发布了新的文献求助10
2秒前
晓兜给晓兜的求助进行了留言
3秒前
可爱的函函应助胡桃采纳,获得30
3秒前
tguczf发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
zwx发布了新的文献求助10
6秒前
小董哥发布了新的文献求助10
6秒前
olekravchenko发布了新的文献求助10
7秒前
稳重如冰发布了新的文献求助10
9秒前
10秒前
英姑应助Rainielove0215采纳,获得10
10秒前
无花果应助彤彤采纳,获得10
11秒前
弥里完成签到 ,获得积分10
12秒前
momo完成签到,获得积分10
13秒前
13秒前
15秒前
16秒前
小董哥完成签到,获得积分10
16秒前
科研通AI6应助剡小贝采纳,获得10
17秒前
18秒前
zwx完成签到,获得积分20
18秒前
一窝八个完成签到,获得积分10
18秒前
胡桃发布了新的文献求助30
19秒前
西瓜完成签到 ,获得积分10
20秒前
20秒前
打打应助鄢亮采纳,获得10
21秒前
Xinscribe发布了新的文献求助10
22秒前
22秒前
yyds举报liying求助涉嫌违规
23秒前
浮游应助tguczf采纳,获得10
24秒前
kannakaco发布了新的文献求助10
25秒前
26秒前
田园镇发布了新的文献求助10
26秒前
烟花应助嘎嘎的小羊采纳,获得10
26秒前
27秒前
Arthur完成签到,获得积分10
28秒前
马开峰发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288310
求助须知:如何正确求助?哪些是违规求助? 4440162
关于积分的说明 13823974
捐赠科研通 4322413
什么是DOI,文献DOI怎么找? 2372571
邀请新用户注册赠送积分活动 1368027
关于科研通互助平台的介绍 1331679