Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
xiepeijuan应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
xiepeijuan应助科研通管家采纳,获得10
1秒前
cctv18应助科研通管家采纳,获得20
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
努力的学完成签到,获得积分10
3秒前
一王打尽应助太渊采纳,获得10
4秒前
Haley完成签到 ,获得积分10
4秒前
Arueliano发布了新的文献求助10
6秒前
为小嗳打伞完成签到,获得积分10
6秒前
动听的囧完成签到,获得积分10
7秒前
xxxxffff发布了新的文献求助10
7秒前
Cetus完成签到,获得积分20
8秒前
英俊的铭应助包容的鸽子采纳,获得10
9秒前
loyal发布了新的文献求助10
9秒前
搞科研的小李同学完成签到,获得积分10
9秒前
聪明的谷菱完成签到,获得积分10
10秒前
10秒前
上上签完成签到 ,获得积分10
11秒前
lincik完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
馒头发布了新的文献求助10
13秒前
Wasif发布了新的文献求助10
15秒前
17秒前
Jasper应助吴迪采纳,获得10
17秒前
Akim应助如意2023采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763006
求助须知:如何正确求助?哪些是违规求助? 3307547
关于积分的说明 10140181
捐赠科研通 3022642
什么是DOI,文献DOI怎么找? 1659177
邀请新用户注册赠送积分活动 792394
科研通“疑难数据库(出版商)”最低求助积分说明 754957