Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石本松完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
刘大宝发布了新的文献求助10
刚刚
巫马炎彬完成签到,获得积分0
1秒前
酷波er应助rainhowk采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研通AI6.1应助WangJ1018采纳,获得10
2秒前
lz34217完成签到 ,获得积分10
2秒前
2秒前
2秒前
核潜艇很优秀给沉默棉花糖的求助进行了留言
2秒前
HFBB完成签到,获得积分10
2秒前
3秒前
科研鬼才完成签到,获得积分10
3秒前
乐乐应助陈仲采纳,获得10
3秒前
3秒前
忆之完成签到,获得积分10
3秒前
秦斌斌发布了新的文献求助10
4秒前
小雨完成签到,获得积分10
4秒前
erwasong完成签到,获得积分10
4秒前
5秒前
5秒前
秦罗敷完成签到,获得积分10
6秒前
6秒前
就将计就计完成签到,获得积分10
6秒前
勤劳初雪应助fk采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
yhb发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
乔治的恐龙完成签到 ,获得积分10
8秒前
蓝天发布了新的文献求助10
8秒前
黄启烽发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751092
求助须知:如何正确求助?哪些是违规求助? 5466905
关于积分的说明 15368802
捐赠科研通 4890277
什么是DOI,文献DOI怎么找? 2629616
邀请新用户注册赠送积分活动 1577855
关于科研通互助平台的介绍 1534083