Learning-Based Edge-Device Collaborative DNN Inference in IoVT Networks

计算机科学 推论 GSM演进的增强数据速率 边缘设备 人工智能 机器学习 计算机网络 操作系统 云计算
作者
Xiaodong Xu,Kaiwen Yan,Shujun Han,Bizhu Wang,Xiaofeng Tao,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7989-8004 被引量:6
标识
DOI:10.1109/jiot.2023.3317785
摘要

Deep neural network (DNN) is a promising technology for Internet of Visual Things (IoVT) devices to extrct their visual information from unstructured data. However, it is hard to deploy a complete DNN model at resource-constrained IoVT devices to fulfill their latency, energy, and inference accuracy demands. Exploiting the reachable and available computing resources of IoVT devices and mobile-edge computing (MEC) servers, we propose an edge-device collaborative DNN inference framework to empower resource-constrained IoVT devices to perform DNN-based inference. Especially, the DNN model partition separates the DNN model into two parts, which are deployed on both the IoVT devices and multiaccess MEC server for performing inference collaboratively. The DNN early exit and computation resource allocation are employed to accelerate the DNN inference while guaranteeing the inference accuracy. Moreover, a metric to measure the inference performance of average latency and accuracy (IPLA) is designed. Joint multiuser DNN partitioning, early exit point selection, and computation resource allocation are optimized to maximize the tradeoff performance of inference latency and accuracy. We model the optimized problem as an Markov decision process and propose a deep deterministic policy gradient-based edge-device collaborative DNN inference algorithm to solve the problem of huge state space and high-dimensional continuous actions. Experiments are conducted with the Alexnet model on the data set of CIFAR-10 and Resnet-50 model on the data set of ImageNet. Simulation results verify that the proposed algorithm speeds up the overall inference execution of IoVT devices while guaranteeing inference accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chloe发布了新的文献求助10
刚刚
liangqiwei发布了新的文献求助10
刚刚
Lee完成签到,获得积分10
刚刚
yanlonghappy发布了新的文献求助10
刚刚
22完成签到,获得积分20
1秒前
高子懿发布了新的文献求助10
1秒前
1秒前
Desperado发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
蓝风铃完成签到 ,获得积分10
2秒前
2秒前
迷人樱发布了新的文献求助10
2秒前
ljy完成签到,获得积分10
2秒前
小宝爸爸发布了新的文献求助10
2秒前
Sissi发布了新的文献求助10
2秒前
cccccc发布了新的文献求助10
3秒前
勤奋成风发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
宇宙拿铁完成签到 ,获得积分10
3秒前
GH完成签到,获得积分10
3秒前
4秒前
九局下半发布了新的文献求助10
4秒前
xiaotianli完成签到,获得积分10
4秒前
长度2到完成签到,获得积分10
4秒前
4秒前
李爱国应助傻傻的凌寒采纳,获得10
5秒前
5秒前
RJ应助toxin37采纳,获得10
6秒前
6秒前
6秒前
长孙明雪完成签到,获得积分10
7秒前
优秀的邪欢完成签到 ,获得积分10
7秒前
7秒前
万圣夜完成签到,获得积分10
7秒前
8秒前
我是老大应助LHZM采纳,获得10
9秒前
9秒前
安安完成签到,获得积分10
10秒前
丝绒发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476