Adaptive Dehazing YOLO for Object Detection

计算机科学 人工智能 目标检测 计算机视觉 特征(语言学) 恶劣天气 特征提取 编码器 对象(语法) 图像(数学) 模式识别(心理学) 语言学 物理 气象学 操作系统 哲学
作者
Kaiwen Zhang,Xuefeng Yan,Yongzhen Wang,Junchen Qi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 14-27 被引量:5
标识
DOI:10.1007/978-3-031-44195-0_2
摘要

While CNN-based object detection methods operate smoothly in normal images, they produce poor detection results under adverse weather conditions due to image degradation. To address this issue, we propose a novel Adaptive Dehazing YOLO (DH-YOLO) framework to reduce the impact of weather information on the detection tasks. DH-YOLO is a multi-task learning paradigm that jointly optimizes object detection and image restoration tasks in an end-to-end fashion. In the image restoration module, the feature extraction network serves as an encoder, and a Feature Filtering Module (FFM) is used to remove redundant features. The FFM contains an Adaptive Dehazing Module for image recovery, whose parameters are quickly calculated using a lightweight Cascaded Partial Decoder. This allows the framework to make use of weather-invariant information in hazy images to extract haze-free features. By sharing three feature layers at different scales between the two subtasks, the performance of the object detection network is improved by the use of clear features. DH-YOLO is based on YOLOv4 and forms a unified, end-to-end model with the above modules. Experimental results show that our method outperforms many advanced detection methods on real-world foggy datasets, demonstrating its effectiveness in object detection under adverse weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunrase发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
yuan发布了新的文献求助10
刚刚
WSYang完成签到,获得积分10
刚刚
刚刚
完美世界应助1234567890采纳,获得10
1秒前
1秒前
1秒前
爱吃烤肉的兔子完成签到,获得积分20
1秒前
2秒前
善学以致用应助阔达冷荷采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
愚柳发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
五七完成签到,获得积分10
5秒前
Shan5完成签到,获得积分10
6秒前
6秒前
ziyu完成签到,获得积分10
6秒前
7秒前
ares-gxd发布了新的文献求助10
7秒前
Zhang发布了新的文献求助10
7秒前
烟花应助练大金采纳,获得10
7秒前
7秒前
7秒前
yanzi发布了新的文献求助10
8秒前
慕青应助mufulee采纳,获得30
8秒前
8秒前
lingyu完成签到,获得积分10
9秒前
9秒前
wangyf完成签到,获得积分10
9秒前
9秒前
Orange应助xun采纳,获得200
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871