Matching Game for Multi-Task Federated Learning in Internet of Vehicles

互联网 计算机科学 任务(项目管理) 匹配(统计) 基于游戏的学习 计算机网络 人机交互 多媒体 万维网 工程类 系统工程 数学 统计
作者
Zejun Li,Hao Wu,Yunlong Lu,Bo Ai,Zhangdui Zhong,Yan Zhang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 1623-1636 被引量:2
标识
DOI:10.1109/tvt.2023.3315050
摘要

To overcome the inherent defects of massive data uploading and processing in traditional machine learning, federated learning is emerged as a promising tool given that it enables to implement privacy-preserved distributed machine learning in Internet of Vehicles (IoV). However, the performance of federated learning suffers from several challenges, especially ineffective execution of delay-sensitive tasks triggered simultaneously by moving vehicles. To minimize the total execution delay of multiple tasks, we propose a multi-task federated learning framework which improves task completion rate and enables each task to be completed in time. Moreover, we also aim to improve the network utility of the IoV. The algorithm of joint optimization algorithm is proposed to achieve a stable partition of vehicle coalitions based on the block coordinate descent (BCD) method, the matching game-based coalition method, and gradient projection method. The performance of the proposed multi-task federated learning is evaluated through numerical simulations in terms of total latency, network utility, and accuracy of federated learning tasks. The results show that our proposed multi-task federated learning framework and algorithm guarantees the completion of multiple delay-sensitive tasks effectively while improving vehicular network utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhz发布了新的文献求助10
刚刚
宋文娟发布了新的文献求助10
1秒前
1秒前
充电宝应助依然灬聆听采纳,获得10
2秒前
情怀应助清秀的怀蝶采纳,获得10
2秒前
3秒前
ido关闭了ido文献求助
4秒前
六六发布了新的文献求助10
6秒前
hardyx关注了科研通微信公众号
6秒前
8秒前
8秒前
薛定谔的柯基完成签到,获得积分10
8秒前
祝愿发布了新的文献求助10
10秒前
10秒前
10秒前
Hello应助胡巴采纳,获得10
11秒前
11秒前
丰富的听云完成签到,获得积分10
11秒前
bkagyin应助sunguangbin采纳,获得10
12秒前
13秒前
星辉斑斓完成签到,获得积分10
13秒前
13秒前
认真念梦发布了新的文献求助10
13秒前
铭泽完成签到,获得积分20
14秒前
14秒前
sy6666完成签到,获得积分10
14秒前
dahafei发布了新的文献求助10
14秒前
科研通AI2S应助lhz采纳,获得10
15秒前
16秒前
六六完成签到,获得积分10
17秒前
zzw发布了新的文献求助10
17秒前
123应助coo采纳,获得20
17秒前
帅帅哈完成签到,获得积分10
19秒前
嘉心糖应助宋文娟采纳,获得20
19秒前
铭泽发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
yukang完成签到,获得积分10
24秒前
llling发布了新的文献求助10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306839
求助须知:如何正确求助?哪些是违规求助? 2940658
关于积分的说明 8497925
捐赠科研通 2614820
什么是DOI,文献DOI怎么找? 1428526
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263