Exploring advanced architectural variations of nnUNet

计算机科学 分割 管道(软件) 人工智能 深度学习 特征(语言学) 残余物 频道(广播) 网络体系结构 建筑 模式识别(心理学) 机器学习 数据挖掘 计算机网络 算法 哲学 艺术 视觉艺术 语言学 程序设计语言
作者
Niccolò McConnell,Nchongmaje Ndipenoch,Yu Cao,Alina Miron,Yongmin Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:560: 126837-126837 被引量:6
标识
DOI:10.1016/j.neucom.2023.126837
摘要

The nnUNet is a state-of-the-art deep learning based segmentation framework which automatically and systematically configures the entire network training pipeline. We extend the network architecture component of the nnUNet framework by newly integrating mechanisms from advanced U-Net variations including residual, dense, and inception blocks as well as three forms of the attention mechanism. We propose the following extensions to nnUNet, namely Residual-nnUNet, Dense-nnUNet, Inception-nnUNet, Spatial-Single-Attention-nnUNet, Spatial- Multi-Attention-nnUNet, and Channel-Spatial-Attention-nnUNet. Furthermore, within Channel-Spatial- Attention-nnUNet we integrate our newly proposed variation of the channel-attention mechanism. We demonstrate that use of the nnUNet allows for consistent and transparent comparison of U-Net architectural modifications, while maintaining network architecture as the sole independent variable across experiments with respect to a dataset. The proposed variants are evaluated on eight medical imaging datasets consisting of 20 anatomical regions which is the largest collection of datasets on which attention U-Net variants have been compared in a single work. Our results suggest that attention variants are effective at improving performance when applied to tumour segmentation tasks consisting of two or more target anatomical regions, and that segmentation performance is influenced by use of the deep supervision architectural feature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
富富富发布了新的文献求助10
刚刚
Han发布了新的文献求助10
1秒前
漫漫完成签到,获得积分10
2秒前
wanci应助lantian采纳,获得10
3秒前
3秒前
陈峰琦发布了新的文献求助10
4秒前
5秒前
FartKing发布了新的文献求助20
5秒前
wzj完成签到,获得积分10
6秒前
7秒前
7秒前
s11282023完成签到,获得积分10
7秒前
灵感大王喵完成签到 ,获得积分10
9秒前
XxxPessimist1c完成签到,获得积分10
10秒前
10秒前
s11282023发布了新的文献求助10
10秒前
吕易巧完成签到,获得积分10
11秒前
ZhuSiyuan发布了新的文献求助10
11秒前
CodeCraft应助全糖采纳,获得10
11秒前
音悦台发布了新的文献求助10
12秒前
SciGPT应助XiaoMing采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
shane应助蓝胖子采纳,获得20
17秒前
20秒前
lshl2000完成签到,获得积分10
21秒前
未来余主任完成签到 ,获得积分10
21秒前
22秒前
23秒前
25秒前
27秒前
27秒前
ddcc发布了新的文献求助10
28秒前
科目三应助科研通管家采纳,获得10
29秒前
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
lantian关注了科研通微信公众号
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858