Interpretable Machine Learning for Predicting Symptomatic Pneumonitis in Locally Advanced Non-Small Cell Lung Cancer Patients Treated with Concurrent Chemoradiotherapy and Immune Checkpoint Inhibitor Consolidation

医学 肺炎 放化疗 肺癌 放射治疗 肺容积 核医学 放射科 内科学
作者
Lian Duan,Sang Ho Lee,Nikhil Yegya‐Raman,Dongdong Wang,Bo Li,Cole Friedes,Michelle Iocolano,Gary D. Kao,Yong Fan,Richard A. Caruana,Steven J. Feigenberg,Ying Xiao
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e464-e464
标识
DOI:10.1016/j.ijrobp.2023.06.1664
摘要

The rate of grade 2 and higher pneumonitis has increased with the use of immune checkpoint inhibitors (ICI) following chemoradiotherapy (CRT) for lung cancer, which may alter previously established dose-volume constraints (DVC). In this study, we used an interpretable machine learning model with clinical and dosimetric features to predict grade 2+ pneumonitis and determine DVC associated with pneumonitis for locally advanced non-small cell lung cancer (LA-NSCLC) radiotherapy (RT).Between October 2017 and December 2021, 223 consecutively treated patients with LANSCLC treated with CRT and ICI were retrospectively reviewed. The dataset was split into training and test sets (n = 144/79). Clinical features included age, sex, smoking status, pack-years, BMI, ECOG PS, COPD, tumor location, delivered dose, RT technique, chemotherapy agent and volume of GTVp/GTVn. A total of 228 dosimetric features from the heart, contralateral/ipsilateral lung and lungs-IGTV were extracted, including the minimum/mean dose to the hottest x% volume (Dx%[Gy]/MOHx%[Gy]; x was 5-95 in 5% increments) and minimum/mean/maximum dose and percent volume receiving at least xGy (VxGy [%]; x was 5-60 in 5Gy increments), as well as the overlapping volume of each structure with PTV and the distance from each structure to GTVp/GTVn. Feature selection was performed using Boruta, followed by collinearity removal based on the variance inflation factor. The explainable boosting machine (EBM) was trained on the selected features. The performance of EBM on the test set was evaluated using the area under the receiver operating characteristic curve (AUC) and compared with that of blackbox (BB) models, including extreme gradient boosting (XGB), random forest (RF), and supporting vector machine (SVM). The global explanation of each feature's contribution to the predictions provided by the EBM was used to determine DVC. Shapley additive explanations (SHAP) were used to explain BB predictions.Selected features, ranked in order of EBM's overall feature importance, were V25Gy [%] and MOH65%[Gy] in the ipsilateral lung, the maximum dose in the heart, MOH30%[Gy] in the contralateral lung, and BMI. No dosimetric features in the lungs-IGTV were selected. The SHAP values of three BB models showed similar trends to the feature importance of the EBM. The global explanations of the EBM suggested that to mitigate the risk of pneumonitis, the ipsilateral lung should have V25Gy [%] < 36.8% and MOH65%[Gy] < 39.5Gy, and the heart should have D0.03cc [Gy] < 66.0Gy. Furthermore, an increased risk of pneumonitis was indicated with an increase in BMI, and, surprisingly, a decrease in MOH30%[Gy] in the contralateral lung. The EBM showed the best performance for predicting grade 2+ pneumonitis (AUC = 0.739), followed by RF, SVM, and XGB (AUC = 0.735, 0.733, and 0.717).EBM has the potential to predict grade 2+ pneumonitis in LA-NSCLC patients treated with CRT and ICI, while providing guidance on DVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JK完成签到,获得积分10
刚刚
1秒前
LAVINE发布了新的文献求助10
1秒前
小马甲应助宋相甫采纳,获得10
1秒前
1秒前
VergissH发布了新的文献求助10
2秒前
2秒前
柚子发布了新的文献求助10
2秒前
2秒前
彩色的奄完成签到,获得积分10
2秒前
Seven发布了新的文献求助10
2秒前
布丁完成签到,获得积分10
2秒前
Lei发布了新的文献求助10
2秒前
3秒前
3秒前
拉拉啊了发布了新的文献求助10
3秒前
lifen发布了新的文献求助10
3秒前
3秒前
烟花应助1111采纳,获得10
3秒前
小w完成签到,获得积分10
4秒前
警长发布了新的文献求助10
4秒前
naomi完成签到,获得积分10
4秒前
尔玉完成签到 ,获得积分10
4秒前
5秒前
biofresh完成签到,获得积分10
5秒前
英勇真发布了新的文献求助10
6秒前
酷波er应助577采纳,获得10
6秒前
菲菲不是飞飞完成签到,获得积分10
6秒前
勤奋的含烟给勤奋的含烟的求助进行了留言
7秒前
Hello应助penguin采纳,获得10
7秒前
隐形曼青应助方源采纳,获得10
7秒前
7秒前
CodeCraft应助荔枝酱果冻采纳,获得10
7秒前
golfgold完成签到,获得积分10
7秒前
8秒前
flow发布了新的文献求助10
8秒前
8秒前
ycool完成签到 ,获得积分10
8秒前
桐桐应助凡仔采纳,获得10
9秒前
暴躁的元灵完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701