Weakly guided attention model with hierarchical interaction for brain CT report generation

计算机科学 人工智能 判决 特征(语言学) 发电机(电路理论) 分层数据库模型 匹配(统计) 代表(政治) 模式识别(心理学) 自然语言处理 医学 数据挖掘 病理 哲学 功率(物理) 语言学 物理 量子力学 政治 政治学 法学
作者
Xiaodan Zhang,Sisi Yang,Yanzhao Shi,Junzhong Ji,Ying Liu,Zheng Wang,Huimin Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107650-107650 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107650
摘要

Brain Computed Tomography (CT) report generation, which aims to assist radiologists in diagnosing cerebrovascular diseases efficiently, is challenging in feature representation for dozens of images and language descriptions with several sentences. Existing report generation methods have achieved significant achievement based on the encoder–decoder framework and attention mechanism. However, current research has limitations in solving the many-to-many alignment between the multi-images of Brain CT imaging and the multi-sentences of Brain CT report, and fails to attend to critical images and lesion areas, resulting in inaccurate descriptions. In this paper, we propose a novel Weakly Guided Attention Model with Hierarchical Interaction, named WGAM-HI, to improve Brain CT report generation. Specifically, WGAM-HI conducts many-to-many matching for multiple visual images and semantic sentences via a hierarchical interaction framework with a two-layer attention model and a two-layer report generator. In addition, two weakly guided mechanisms are proposed to facilitate the attention model to focus more on important images and lesion areas under the guidance of pathological events and Gradient-weighted Class Activation Mapping (Grad-CAM) respectively. The pathological event acts as a bridge between the essential serial images and the corresponding sentence, and the Grad-CAM bridges the lesion areas and pathology words. Therefore, under the hierarchical interaction with the weakly guided attention model, the report generator generates more accurate words and sentences. Experiments on the Brain CT dataset demonstrate the effectiveness of WGAM-HI in attending to important images and lesion areas gradually, and generating more accurate reports.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu8577应助杨旸采纳,获得10
1秒前
执玉完成签到,获得积分10
1秒前
空格TNT完成签到 ,获得积分10
1秒前
1秒前
zzzzz完成签到,获得积分10
1秒前
丘比特应助跳跃的含双采纳,获得10
3秒前
qiuzhen发布了新的文献求助10
3秒前
3秒前
hm777完成签到,获得积分10
3秒前
luqi发布了新的文献求助10
3秒前
万能图书馆应助螺丝老人采纳,获得10
4秒前
4秒前
英姑应助不舍天真采纳,获得10
4秒前
4秒前
wu8577应助小白采纳,获得10
4秒前
糖糖钰发布了新的文献求助10
5秒前
乌梅柿完成签到,获得积分20
5秒前
5秒前
大林小隐发布了新的文献求助10
7秒前
斯文败类应助杨阳洋采纳,获得10
7秒前
乙醇完成签到 ,获得积分10
8秒前
8秒前
8秒前
薛兰洁发布了新的文献求助10
8秒前
研友_VZG7GZ应助萧暖采纳,获得10
9秒前
Russell完成签到,获得积分10
9秒前
9秒前
牛轧唐应助古月采纳,获得10
9秒前
党弛完成签到,获得积分10
10秒前
Russell发布了新的文献求助10
11秒前
卑微科研完成签到,获得积分10
12秒前
13秒前
13秒前
ZhihaoYang完成签到,获得积分10
13秒前
冷酷的猎豹完成签到,获得积分10
14秒前
千空发布了新的文献求助10
14秒前
14秒前
erdaidai发布了新的文献求助10
14秒前
14秒前
别太拗口哦oo完成签到,获得积分20
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958393
求助须知:如何正确求助?哪些是违规求助? 3504692
关于积分的说明 11119524
捐赠科研通 3235856
什么是DOI,文献DOI怎么找? 1788584
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802605