Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes

医学 射血分数 胸骨旁线 心脏病学 内科学 心力衰竭 回廊的 心肌梗塞 接收机工作特性 心房颤动
作者
Emily S. Lau,Paolo Di Achille,Kavya Kopparapu,Carl T. Andrews,Pulkit Singh,Christopher Reeder,Mostafa A. Al‐Alusi,Shaan Khurshid,Julian S. Haimovich,Patrick T. Ellinor,Michael H. Picard,Puneet Batra,Steven A. Lubitz,Jennifer E. Ho
出处
期刊:Journal of the American College of Cardiology [Elsevier]
卷期号:82 (20): 1936-1948 被引量:5
标识
DOI:10.1016/j.jacc.2023.09.800
摘要

Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Damian完成签到,获得积分10
刚刚
ccc完成签到,获得积分10
1秒前
小白完成签到 ,获得积分10
1秒前
1秒前
活力太兰完成签到,获得积分10
2秒前
XCL发布了新的文献求助20
2秒前
3秒前
3秒前
s11282023完成签到,获得积分10
3秒前
小二郎应助Charon采纳,获得10
4秒前
欢呼芷容完成签到,获得积分10
4秒前
金爬虫发布了新的文献求助10
5秒前
5秒前
积极的惜萱完成签到,获得积分10
5秒前
无私萧完成签到,获得积分20
5秒前
5秒前
找不到文献的小江完成签到,获得积分10
5秒前
舒心的枫发布了新的文献求助10
7秒前
陈半喆完成签到,获得积分10
7秒前
7秒前
wen完成签到 ,获得积分10
7秒前
江枫完成签到 ,获得积分10
7秒前
歪街完成签到 ,获得积分10
8秒前
gege发布了新的文献求助10
8秒前
wang5cl完成签到,获得积分10
8秒前
英姑应助朱佳玉采纳,获得10
8秒前
9秒前
9秒前
Lucas应助jiefeng123采纳,获得10
10秒前
美美完成签到,获得积分10
10秒前
NEW完成签到 ,获得积分10
11秒前
木象爱火锅完成签到,获得积分10
12秒前
yuan0317完成签到,获得积分10
12秒前
小吴诶发布了新的文献求助10
12秒前
hu11完成签到,获得积分10
12秒前
元谷雪发布了新的文献求助50
12秒前
12秒前
天阳完成签到,获得积分10
13秒前
科研通AI2S应助laola采纳,获得10
13秒前
贪玩海之完成签到,获得积分10
13秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143003
求助须知:如何正确求助?哪些是违规求助? 2794045
关于积分的说明 7809520
捐赠科研通 2450348
什么是DOI,文献DOI怎么找? 1303779
科研通“疑难数据库(出版商)”最低求助积分说明 627056
版权声明 601384