亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes

医学 射血分数 胸骨旁线 心脏病学 内科学 心力衰竭 回廊的 心肌梗塞 接收机工作特性 心房颤动
作者
Emily S. Lau,Paolo Di Achille,Kavya Kopparapu,Carl T. Andrews,Pulkit Singh,Christopher Reeder,Mostafa A. Al‐Alusi,Shaan Khurshid,Julian S. Haimovich,Patrick T. Ellinor,Michael H. Picard,Puneet Batra,Steven A. Lubitz,Jennifer E. Ho
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:82 (20): 1936-1948 被引量:5
标识
DOI:10.1016/j.jacc.2023.09.800
摘要

Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
10秒前
kaka发布了新的文献求助10
23秒前
51秒前
1分钟前
完美世界应助勿惏采纳,获得10
1分钟前
1分钟前
fladen给仗剑Z天涯的求助进行了留言
1分钟前
研友_VZG7GZ应助cqhecq采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
彭于晏应助Rick采纳,获得10
2分钟前
2分钟前
SciGPT应助浅弋采纳,获得10
2分钟前
2分钟前
2分钟前
cqhecq发布了新的文献求助10
2分钟前
JZX发布了新的文献求助10
2分钟前
2分钟前
Hello应助JZX采纳,获得30
3分钟前
浅弋发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Rick发布了新的文献求助10
3分钟前
Leofar完成签到 ,获得积分10
3分钟前
Rick完成签到,获得积分10
3分钟前
himes发布了新的文献求助10
3分钟前
3分钟前
英姑应助balabala采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
balabala发布了新的文献求助10
4分钟前
阿亮发布了新的文献求助10
4分钟前
王旺碎冰冰完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264