已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms

支持向量机 试验装置 随机森林 人工智能 机器学习 梯度升压 回归 算法 计算机科学 聚类分析 数学 统计
作者
Yujia Tian,Zhixing Zhang,Aixia Yan
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:28 (19): 6782-6782 被引量:3
标识
DOI:10.3390/molecules28196782
摘要

Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase (mPGES-1) are two key targets in anti-inflammatory therapy. Medicine and food homology (MFH) substances have both edible and medicinal properties, providing a valuable resource for the development of novel, safe, and efficient COX-2 and mPGES-1 inhibitors. In this study, we collected active ingredients from 503 MFH substances and constructed the first comprehensive MFH database containing 27,319 molecules. Subsequently, we performed Murcko scaffold analysis and K-means clustering to deeply analyze the composition of the constructed database and evaluate its structural diversity. Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. Among them, ModelA_ensemble_RF_1 emerged as the optimal classification model for COX-2 inhibitors, achieving predicted Matthews correlation coefficient (MCC) values of 0.802 and 0.603 on the test set and external validation set, respectively. ModelC_RDKIT_SVM_2 was identified as the best regression model based on COX-2 inhibitors, with root mean squared error (RMSE) values of 0.419 and 0.513 on the test set and external validation set, respectively. ModelD_ECFP_SVM_4 stood out as the top classification model for mPGES-1 inhibitors, attaining MCC values of 0.832 and 0.584 on the test set and external validation set, respectively. The optimal regression model for mPGES-1 inhibitors, ModelF_3D_SVM_1, exhibited predictive RMSE values of 0.253 and 0.35 on the test set and external validation set, respectively. Finally, we proposed a ligand-based cascade virtual screening strategy, which integrated the well-performing supervised machine learning models with unsupervised learning: the self-organized map (SOM) and molecular scaffold analysis. Using this virtual screening workflow, we discovered 10 potential COX-2 inhibitors and 15 potential mPGES-1 inhibitors from the MFH database. We further verified candidates by molecular docking, investigated the interaction of the candidate molecules upon binding to COX-2 or mPGES-1. The constructed comprehensive MFH database has laid a solid foundation for the further research and utilization of the MFH substances. The series of well-performing machine learning models can be employed to predict the COX-2 and mPGES-1 inhibitory capabilities of unknown compounds, thereby aiding in the discovery of anti-inflammatory medications. The COX-2 and mPGES-1 potential inhibitor molecules identified through the cascade virtual screening approach provide insights and references for the design of highly effective and safe novel anti-inflammatory drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pei完成签到,获得积分10
刚刚
碧蓝满天完成签到 ,获得积分10
1秒前
fx完成签到 ,获得积分10
1秒前
multimodal完成签到 ,获得积分10
2秒前
KT酱完成签到 ,获得积分10
2秒前
3秒前
不可以哦完成签到 ,获得积分10
3秒前
狄拉克汉堡包完成签到 ,获得积分10
3秒前
exosome发布了新的文献求助10
4秒前
小文cremen完成签到 ,获得积分10
4秒前
4秒前
外向的曲奇完成签到,获得积分10
4秒前
解语花发布了新的文献求助10
4秒前
馆长应助星辰采纳,获得20
4秒前
橘络完成签到 ,获得积分10
5秒前
Ronan完成签到 ,获得积分10
5秒前
椰椰完成签到 ,获得积分10
5秒前
6秒前
香蕉觅云应助GCD采纳,获得10
6秒前
花海完成签到 ,获得积分10
6秒前
7秒前
快乐芷荷完成签到 ,获得积分10
7秒前
小医发布了新的文献求助10
8秒前
meow完成签到 ,获得积分10
8秒前
脑洞疼应助好久不见采纳,获得10
9秒前
颖宝老公完成签到,获得积分0
9秒前
Uki完成签到 ,获得积分10
9秒前
解语花完成签到,获得积分10
9秒前
cindy完成签到 ,获得积分10
9秒前
kai chen完成签到 ,获得积分0
10秒前
赵莹静发布了新的文献求助10
10秒前
qqq完成签到,获得积分10
11秒前
健壮柚子完成签到 ,获得积分10
11秒前
卷面皮的绿豆糕完成签到,获得积分20
12秒前
Wsyyy完成签到 ,获得积分10
12秒前
小鱼完成签到 ,获得积分10
12秒前
刀客特liu发布了新的文献求助10
12秒前
whl完成签到 ,获得积分10
13秒前
狂奔弟弟完成签到 ,获得积分10
14秒前
哔噗哔噗完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944288
求助须知:如何正确求助?哪些是违规求助? 4209306
关于积分的说明 13085029
捐赠科研通 3988853
什么是DOI,文献DOI怎么找? 2183945
邀请新用户注册赠送积分活动 1199314
关于科研通互助平台的介绍 1112189

今日热心研友

馆长
4 20
核桃
3
浮游
1 20
你嵙这个期刊没买
20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10