Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms

支持向量机 试验装置 随机森林 人工智能 机器学习 梯度升压 回归 算法 计算机科学 聚类分析 数学 统计
作者
Yujia Tian,Zhixing Zhang,Aixia Yan
出处
期刊:Molecules [MDPI AG]
卷期号:28 (19): 6782-6782 被引量:1
标识
DOI:10.3390/molecules28196782
摘要

Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase (mPGES-1) are two key targets in anti-inflammatory therapy. Medicine and food homology (MFH) substances have both edible and medicinal properties, providing a valuable resource for the development of novel, safe, and efficient COX-2 and mPGES-1 inhibitors. In this study, we collected active ingredients from 503 MFH substances and constructed the first comprehensive MFH database containing 27,319 molecules. Subsequently, we performed Murcko scaffold analysis and K-means clustering to deeply analyze the composition of the constructed database and evaluate its structural diversity. Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. Among them, ModelA_ensemble_RF_1 emerged as the optimal classification model for COX-2 inhibitors, achieving predicted Matthews correlation coefficient (MCC) values of 0.802 and 0.603 on the test set and external validation set, respectively. ModelC_RDKIT_SVM_2 was identified as the best regression model based on COX-2 inhibitors, with root mean squared error (RMSE) values of 0.419 and 0.513 on the test set and external validation set, respectively. ModelD_ECFP_SVM_4 stood out as the top classification model for mPGES-1 inhibitors, attaining MCC values of 0.832 and 0.584 on the test set and external validation set, respectively. The optimal regression model for mPGES-1 inhibitors, ModelF_3D_SVM_1, exhibited predictive RMSE values of 0.253 and 0.35 on the test set and external validation set, respectively. Finally, we proposed a ligand-based cascade virtual screening strategy, which integrated the well-performing supervised machine learning models with unsupervised learning: the self-organized map (SOM) and molecular scaffold analysis. Using this virtual screening workflow, we discovered 10 potential COX-2 inhibitors and 15 potential mPGES-1 inhibitors from the MFH database. We further verified candidates by molecular docking, investigated the interaction of the candidate molecules upon binding to COX-2 or mPGES-1. The constructed comprehensive MFH database has laid a solid foundation for the further research and utilization of the MFH substances. The series of well-performing machine learning models can be employed to predict the COX-2 and mPGES-1 inhibitory capabilities of unknown compounds, thereby aiding in the discovery of anti-inflammatory medications. The COX-2 and mPGES-1 potential inhibitor molecules identified through the cascade virtual screening approach provide insights and references for the design of highly effective and safe novel anti-inflammatory drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助独特的易形采纳,获得10
刚刚
无花果应助崔先生采纳,获得10
刚刚
刚刚
1秒前
传奇3应助时尚凡雁采纳,获得10
1秒前
xlz完成签到,获得积分10
2秒前
2秒前
小陈老板完成签到,获得积分10
2秒前
3秒前
3秒前
zhikaiyici给钱念波的求助进行了留言
3秒前
4秒前
chase发布了新的文献求助10
4秒前
Fafa完成签到 ,获得积分10
4秒前
路过的风景完成签到 ,获得积分10
5秒前
年华完成签到 ,获得积分10
5秒前
5秒前
倔强的大萝卜完成签到,获得积分0
6秒前
孙壮壮发布了新的文献求助10
6秒前
7秒前
bliyaa发布了新的文献求助10
7秒前
7秒前
叶承阳完成签到,获得积分10
7秒前
8秒前
8秒前
简单灵凡发布了新的文献求助10
8秒前
ticky完成签到,获得积分20
9秒前
9秒前
9秒前
jasmine完成签到,获得积分10
9秒前
普萘洛尔完成签到,获得积分10
9秒前
崔先生完成签到,获得积分20
9秒前
yibo发布了新的文献求助10
10秒前
徐叽钰完成签到,获得积分10
11秒前
打打应助白一丹采纳,获得10
11秒前
所所应助义气的嘉熙采纳,获得10
11秒前
一个舒完成签到,获得积分10
12秒前
12秒前
崔先生发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156574
求助须知:如何正确求助?哪些是违规求助? 2808051
关于积分的说明 7875794
捐赠科研通 2466300
什么是DOI,文献DOI怎么找? 1312843
科研通“疑难数据库(出版商)”最低求助积分说明 630280
版权声明 601919