已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms

支持向量机 试验装置 随机森林 人工智能 机器学习 梯度升压 回归 算法 计算机科学 聚类分析 数学 统计
作者
Yujia Tian,Zhixing Zhang,Aixia Yan
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:28 (19): 6782-6782 被引量:3
标识
DOI:10.3390/molecules28196782
摘要

Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase (mPGES-1) are two key targets in anti-inflammatory therapy. Medicine and food homology (MFH) substances have both edible and medicinal properties, providing a valuable resource for the development of novel, safe, and efficient COX-2 and mPGES-1 inhibitors. In this study, we collected active ingredients from 503 MFH substances and constructed the first comprehensive MFH database containing 27,319 molecules. Subsequently, we performed Murcko scaffold analysis and K-means clustering to deeply analyze the composition of the constructed database and evaluate its structural diversity. Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. Among them, ModelA_ensemble_RF_1 emerged as the optimal classification model for COX-2 inhibitors, achieving predicted Matthews correlation coefficient (MCC) values of 0.802 and 0.603 on the test set and external validation set, respectively. ModelC_RDKIT_SVM_2 was identified as the best regression model based on COX-2 inhibitors, with root mean squared error (RMSE) values of 0.419 and 0.513 on the test set and external validation set, respectively. ModelD_ECFP_SVM_4 stood out as the top classification model for mPGES-1 inhibitors, attaining MCC values of 0.832 and 0.584 on the test set and external validation set, respectively. The optimal regression model for mPGES-1 inhibitors, ModelF_3D_SVM_1, exhibited predictive RMSE values of 0.253 and 0.35 on the test set and external validation set, respectively. Finally, we proposed a ligand-based cascade virtual screening strategy, which integrated the well-performing supervised machine learning models with unsupervised learning: the self-organized map (SOM) and molecular scaffold analysis. Using this virtual screening workflow, we discovered 10 potential COX-2 inhibitors and 15 potential mPGES-1 inhibitors from the MFH database. We further verified candidates by molecular docking, investigated the interaction of the candidate molecules upon binding to COX-2 or mPGES-1. The constructed comprehensive MFH database has laid a solid foundation for the further research and utilization of the MFH substances. The series of well-performing machine learning models can be employed to predict the COX-2 and mPGES-1 inhibitory capabilities of unknown compounds, thereby aiding in the discovery of anti-inflammatory medications. The COX-2 and mPGES-1 potential inhibitor molecules identified through the cascade virtual screening approach provide insights and references for the design of highly effective and safe novel anti-inflammatory drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXZ06完成签到,获得积分10
5秒前
6秒前
yuwen发布了新的文献求助10
7秒前
隐形曼青应助Frozen采纳,获得30
8秒前
斯文败类应助张不大采纳,获得10
9秒前
要减肥完成签到,获得积分20
9秒前
英姑应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
ll应助科研通管家采纳,获得10
10秒前
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
11秒前
脑洞疼应助Yuan采纳,获得10
13秒前
谨慎的友安完成签到 ,获得积分10
16秒前
安详的海风完成签到,获得积分10
17秒前
欧阳完成签到 ,获得积分10
26秒前
科研通AI5应助静静采纳,获得10
28秒前
czy完成签到 ,获得积分10
28秒前
29秒前
32秒前
haoran发布了新的文献求助10
35秒前
36秒前
xuxu发布了新的文献求助10
38秒前
iris完成签到,获得积分10
39秒前
姜雍发布了新的文献求助10
40秒前
沧海云完成签到 ,获得积分10
40秒前
43秒前
kaka完成签到,获得积分0
45秒前
kaki发布了新的文献求助10
48秒前
51秒前
kingwill完成签到,获得积分0
52秒前
今天又学明白了完成签到 ,获得积分10
52秒前
MIMI完成签到,获得积分10
53秒前
haoran完成签到,获得积分20
55秒前
明昼完成签到,获得积分10
56秒前
kaki完成签到,获得积分20
56秒前
56秒前
Frozen发布了新的文献求助30
56秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629