Semantic understanding and prompt engineering for large-scale traffic data imputation

计算机科学 插补(统计学) 数据挖掘 缺少数据 语义数据模型 人工智能 机器学习
作者
Kunpeng Zhang,Feng Zhou,Lan Wu,Na Xie,Zhengbing He
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102038-102038 被引量:25
标识
DOI:10.1016/j.inffus.2023.102038
摘要

Intelligent Transportation Systems (ITS) face the formidable challenge of large-scale missing data, particularly in the imputation of traffic data. Existing studies have mainly relied on modeling network-level spatiotemporal correlations to address this issue. However, these methods often overlook the rich semantic information (e.g., road infrastructure, sensor location, etc.) inherent in road networks when capturing network-wide spatiotemporal correlations. We address this limitation by presenting the Graph Transformer-based Traffic Data Imputation (GT-TDI) model, which imputes missing values in extensive traffic data by leveraging spatiotemporal semantic understanding of road networks. The proposed model leverages semantic descriptions that capture the spatial and temporal dynamics of traffic across road networks, enhancing its capacity to infer comprehensive spatiotemporal relationships. Moreover, to augment the model's capabilities, we employ a Large Language Model (LLM) and prompt engineering to enable natural and intuitive interactions with the traffic data imputation system, allowing users to query and request in plain language, without requiring expert knowledge or complex mathematical models. The proposed model, GT-TDI, utilizes Graph Neural Networks (GNN) and Transformer architectures to perform large-scale traffic data imputation using deficient observations, sensor social connectivity, and semantic descriptions as inputs. We evaluate the GT-TDI model on the PeMS freeway dataset and benchmark it against cutting-edge models. The experimental evidence demonstrates that GT-TDI surpasses the cutting-edge approaches in scenarios with intricate patterns and varying rates of missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄康发布了新的文献求助10
刚刚
1秒前
3秒前
xiaohaitao发布了新的文献求助10
3秒前
3秒前
hhj02发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
桐桐应助linguobin采纳,获得10
5秒前
5秒前
5秒前
深情安青应助别绪叁仟采纳,获得10
6秒前
lizhao0215完成签到,获得积分10
6秒前
Owen应助yunpeng采纳,获得10
6秒前
6秒前
研友_nV2pkn发布了新的文献求助10
7秒前
123应助ming采纳,获得20
7秒前
Orange应助ming采纳,获得10
7秒前
雨林发布了新的文献求助10
8秒前
8秒前
孟梦完成签到,获得积分10
8秒前
real发布了新的文献求助10
8秒前
科研通AI2S应助温婉的笑阳采纳,获得10
8秒前
姜至完成签到 ,获得积分10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
qin希望应助科研通管家采纳,获得10
9秒前
9秒前
cocolu应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
qin希望应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
情怀应助个性的乐驹采纳,获得10
10秒前
科研通AI2S应助健壮谷波采纳,获得10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305946
求助须知:如何正确求助?哪些是违规求助? 2939710
关于积分的说明 8494418
捐赠科研通 2614004
什么是DOI,文献DOI怎么找? 1427888
科研通“疑难数据库(出版商)”最低求助积分说明 663199
邀请新用户注册赠送积分活动 648032