Modern rare-earth-containing magnetocaloric materials: Standing on the shoulders of giant Gd5Si2Ge2

磁制冷 热磁对流 镧系元素 金属间化合物 磁性 化学 热力学 材料科学 凝聚态物理 冶金 物理 磁场 合金 磁化 有机化学 离子 量子力学
作者
Jia Yan Law,V. Franco
标识
DOI:10.1016/bs.hpcre.2023.10.004
摘要

The magnetocaloric effect (MCE) is a phenomenon where varying magnetic fields cause temperature changes in magnetic materials, primarily near their thermomagnetic phase transitions. Its first observation was the induced temperature change of 0.7 K (for 1.5 T at 630 K) in a nickel sample near its thermomagnetic phase transition, but the heart of modern magnetocaloric materials research was shaped by Vitalij K. Pecharsky's and Karl A. Gschneidner Jr.'s discovery of the giant magnetocaloric effect (GMCE) in the famous Gd5Si2Ge2. Significant MCE values are achieved when structural transformations coincide with magnetic transitions. This chapter focuses on rare-earth (RE)-containing magnetocaloric compounds that stand on the shoulders of the "giant Gd5Si2Ge2", i.e., whose MCE values meet the GMCE threshold and pays attention to their material criticality assessment. It highlights recent breakthroughs related to first-order thermomagnetic phase transitions (FOMT) and magnetocalorics, including the quantitative criteria to identify FOMT and the critical point at which FOMT crossovers to second-order thermomagnetic phase transition (SOMT). The chapter examines the massive magnetocaloric materials library, including lanthanide metals, binary lanthanide-metalloid compounds, binary lanthanides-transition metals, ternary intermetallics, RE oxides, and alloys with multiple principal elements (known as high entropy alloys). The book chapter also discusses a directed search strategy for designing intermetallics with multi-principal elements exhibiting FOMT and GMCE, which can largely balance criticality and enable a combination of properties with mechanical stability if it is properly applied when searching for and developing modern magnetocaloric materials containing highly critical rare-earth elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daheeeee发布了新的文献求助10
刚刚
tent01完成签到,获得积分10
1秒前
galaxy发布了新的文献求助10
2秒前
朴实涵菡发布了新的文献求助30
2秒前
4秒前
4秒前
4秒前
酷波er应助许子健采纳,获得10
5秒前
6秒前
Rondab应助平常的忆文采纳,获得10
7秒前
Charles完成签到,获得积分10
8秒前
怪杰发布了新的文献求助10
8秒前
suiFeng发布了新的文献求助10
9秒前
畅彤发布了新的文献求助10
11秒前
11秒前
CipherSage应助ruiruili采纳,获得10
11秒前
汉堡包应助xixi采纳,获得10
12秒前
彭于晏应助哇咔咔采纳,获得10
13秒前
槐诗完成签到,获得积分10
15秒前
十二平均律完成签到,获得积分10
15秒前
好运连连完成签到 ,获得积分10
16秒前
17秒前
华仔应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
玉玉应助科研通管家采纳,获得20
20秒前
1111应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388