Leveraging Deep Reinforcement Learning for Water Distribution Systems with Large Action Spaces and Uncertainties: DRL-EPANET for Pressure Control

强化学习 背景(考古学) 计算机科学 人工智能 生物 古生物学
作者
Anas Belfadil,David Modesto,Jordi Meseguer,Bernat Joseph‐Duran,D. Saporta,José Antonio Martín Hernández
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:150 (2) 被引量:1
标识
DOI:10.1061/jwrmd5.wreng-6108
摘要

Deep reinforcement learning (DRL) has undergone a revolution in recent years, enabling researchers to tackle a variety of previously inaccessible sequential decision problems. However, its application to the control of water distribution systems (WDS) remains limited. This research demonstrates the successful application of DRL for pressure control in WDS by simulating an environment using EPANET version 2.2, a popular open-source hydraulic simulator. We highlight the ability of DRL-EPANET to handle large action spaces, with more than 1 million possible actions in each time step, and its capacity to deal with uncertainties such as random pipe breaks. We employ the Branching Dueling Q-Network (BDQ) algorithm, which can learn in this context, and enhance it with an algorithmic modification called BDQ with fixed actions (BDQF) that achieves better rewards, especially when manipulated actions are sparse. The proposed methodology was validated using the hydraulic models of 10 real WDS, one of which integrated transmission and distribution systems operated by Hidralia, and the rest of which were operated by Aigües de Barcelona.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助默默安双采纳,获得10
刚刚
阳阳阳发布了新的文献求助10
1秒前
bwl完成签到,获得积分10
1秒前
zhangshu发布了新的文献求助10
3秒前
waikeyan发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
坚强谷槐完成签到,获得积分10
7秒前
高美美完成签到,获得积分20
7秒前
8秒前
mg完成签到 ,获得积分10
9秒前
txy完成签到 ,获得积分10
10秒前
run关闭了run文献求助
11秒前
默默安双发布了新的文献求助10
12秒前
13秒前
ding应助海上森林的一只猫采纳,获得10
13秒前
13秒前
酷波er应助Fei采纳,获得10
14秒前
小月发布了新的文献求助10
14秒前
桐桐应助zhangshu采纳,获得10
15秒前
16秒前
16秒前
JamesPei应助FDSDK采纳,获得10
17秒前
橘子完成签到 ,获得积分10
19秒前
歌尔德蒙发布了新的文献求助10
19秒前
笨笨棒球应助阳阳阳采纳,获得20
20秒前
LL完成签到,获得积分20
20秒前
waikeyan完成签到,获得积分10
24秒前
Ling完成签到,获得积分10
24秒前
和谐谷菱发布了新的文献求助10
25秒前
26秒前
奋斗的延恶完成签到,获得积分10
28秒前
快去吃蛋糕完成签到,获得积分10
28秒前
28秒前
29秒前
霍冰旋发布了新的文献求助10
32秒前
罗伯特骚塞完成签到,获得积分10
33秒前
昵称完成签到,获得积分10
34秒前
36秒前
JERRY完成签到,获得积分10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150