Centroid-Guided Domain Incremental Learning for EEG-Based Seizure Prediction

质心 计算机科学 人工智能 遗忘 渐进式学习 机器学习 特征(语言学) 领域知识 相似性(几何) 人工神经网络 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Zhiwei Deng,Chang Li,Rencheng Song,Xiang Liu,Ruobing Qian,Xun Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:3
标识
DOI:10.1109/tim.2023.3334330
摘要

When building seizure prediction systems, the typical research scenario is patient-specific. In this scenario, the model is limited to performing well for individual patients and cannot acquire knowledge transferable to new patients to learn a set of universal parameters applicable to all patients. To this end, we investigate a new task scenario, domain incremental (DI) learning, which aims to build a unified epilepsy prediction system that performs well across patients by incrementally learning new patients. However, the neural network exhibits catastrophic forgetting (CF) due to abrupt shifts in domain distributions. The learned representations drift drastically during incremental training, which quickly forgets the knowledge learned from past tasks. To address this, we introduce the experience replay (ER) method, which stores a few samples from previous patients and then replays them in new patient training to facilitate episodic memory formation and consolidation. In addition, we propose a novel centroid-guided ER method (CGER) that computes the class centroid in the feature space using subsets stored in the memory buffer to provide semantic memory. The CGER regularizes incremental training by using cosine similarity to measure the distance between sample embeddings and class centroids, providing additional guidance for parameter updates. Experimental results demonstrate that the ER approach substantially reduces CF and significantly improves performance when combined with CG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助淡淡的姝采纳,获得10
刚刚
刚刚
刚刚
爆米花应助温暖的怀蝶采纳,获得10
2秒前
李健应助yangjingcmu采纳,获得10
2秒前
秋作完成签到,获得积分10
3秒前
不可以懒懒完成签到,获得积分10
4秒前
4秒前
PaoPao发布了新的文献求助10
4秒前
lalala发布了新的文献求助10
4秒前
5秒前
JamesPei应助尘闲采纳,获得10
5秒前
崔双艳完成签到,获得积分10
5秒前
FashionBoy应助温乘云采纳,获得10
6秒前
季风气候完成签到 ,获得积分10
6秒前
愤怒的乐松应助yejing采纳,获得10
7秒前
思源应助杨哈哈采纳,获得10
7秒前
需要交流的铅笔完成签到 ,获得积分10
7秒前
7秒前
ily.应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
cocolu应助科研通管家采纳,获得10
7秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
乐乐应助Henry采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
cocolu应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
劲秉应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648