已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Centroid-Guided Domain Incremental Learning for EEG-Based Seizure Prediction

质心 计算机科学 人工智能 遗忘 渐进式学习 机器学习 特征(语言学) 领域知识 相似性(几何) 人工神经网络 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Zhiwei Deng,Chang Li,Rencheng Song,Xiang Liu,Ruobing Qian,Xun Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:6
标识
DOI:10.1109/tim.2023.3334330
摘要

When building seizure prediction systems, the typical research scenario is patient-specific. In this scenario, the model is limited to performing well for individual patients and cannot acquire knowledge transferable to new patients to learn a set of universal parameters applicable to all patients. To this end, we investigate a new task scenario, domain incremental (DI) learning, which aims to build a unified epilepsy prediction system that performs well across patients by incrementally learning new patients. However, the neural network exhibits catastrophic forgetting (CF) due to abrupt shifts in domain distributions. The learned representations drift drastically during incremental training, which quickly forgets the knowledge learned from past tasks. To address this, we introduce the experience replay (ER) method, which stores a few samples from previous patients and then replays them in new patient training to facilitate episodic memory formation and consolidation. In addition, we propose a novel centroid-guided ER method (CGER) that computes the class centroid in the feature space using subsets stored in the memory buffer to provide semantic memory. The CGER regularizes incremental training by using cosine similarity to measure the distance between sample embeddings and class centroids, providing additional guidance for parameter updates. Experimental results demonstrate that the ER approach substantially reduces CF and significantly improves performance when combined with CG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默幻弦完成签到,获得积分10
2秒前
CCsouljump完成签到 ,获得积分10
4秒前
典雅的黑猫完成签到,获得积分10
4秒前
王东发布了新的文献求助10
4秒前
cmxing完成签到 ,获得积分10
4秒前
祖尔风完成签到,获得积分10
6秒前
所所应助嘟嘟噜采纳,获得10
6秒前
浮浮世世发布了新的文献求助10
7秒前
犹豫的雁卉完成签到,获得积分10
8秒前
9秒前
orixero应助智慧吗喽采纳,获得10
9秒前
共享精神应助harmon采纳,获得10
10秒前
13秒前
科研通AI6应助张志超采纳,获得10
13秒前
张贵虎发布了新的文献求助10
13秒前
米酒汤圆发布了新的文献求助10
13秒前
14秒前
bkagyin应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
大个应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
ambitiouslu发布了新的文献求助10
17秒前
RR发布了新的文献求助10
19秒前
kevin1018发布了新的文献求助10
20秒前
赘婿应助黎明森采纳,获得10
23秒前
24秒前
田様应助张贵虎采纳,获得10
27秒前
32秒前
wop111应助啦咯采纳,获得30
33秒前
黎明森发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339