A novel spectral coherence-based weighted envelope spectrum analysis method for bearing fault diagnosis

自相关 加权 光谱包络 包络线(雷达) 算法 连贯性(哲学赌博策略) 频带 数学 循环平稳过程 断层(地质) 计算机科学 峰度 模式识别(心理学) 人工智能 物理 语音识别 声学 带宽(计算) 统计 电信 地震学 地质学 频道(广播) 雷达
作者
Lingli Cui,Xinyuan Zhao,Dongdong Liu,Huaqing Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2457-2474 被引量:15
标识
DOI:10.1177/14759217231201177
摘要

Spectral coherence (SCoh) consists of spectral and cyclic frequencies and exhibits unique merits in simultaneously revealing the resonance frequency band and the fault characteristic frequency (FCF) of bearing signals. Most SCoh-based methods only consider the spectral frequency information, while the cyclic frequency information is ignored. However, the fault information and interference components are difficult to distinguish when only the spectral frequency is considered. To address this challenge, a novel bidirectional weighted enhanced envelope spectrum (BWEES) analysis method is proposed in this paper. First, an improved spectral weighting method is developed, which is conducted in the spectral frequency direction to enhance the resonance frequency band that carries the fault information. An autocorrelation function is exploited to reveal the cyclic information hidden in noises and appropriate weights are assigned to the spectral frequencies according to the magnitudes of autocorrelation values. Second, a cyclic weighting function is designed, which is operated in the cyclic frequency direction to enhance the FCF and suppress noise interference. The cyclic frequency components with the highest magnitudes are selected as a basis to reconstruct the one-dimensional cyclic frequency map for assigning different weights. Finally, the two-dimensional weighted bivariable map is constructed and then converted into spectral coherence to reveal the fault features. The BWEES is tested by simulation signals and experimental data, and compared with four state-of-art methods. In particular, the kurtosis values of BWEES in four different cases are 7.637, 12.831, 15.269, and 80.269, which are higher than other methods. The Gini index values of BWEES in four different cases are 0.866, 0.812, 0.424, and 0.306, which are also the largest. The above numerical results show that BWEES can achieve better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研究生end应助一路硕博采纳,获得50
刚刚
1秒前
1秒前
可爱的函函应助哈哈哈哈采纳,获得10
1秒前
标致曼香发布了新的文献求助10
1秒前
1秒前
ss完成签到,获得积分10
2秒前
zy完成签到,获得积分10
2秒前
小菜鸟发布了新的文献求助10
3秒前
海棠发布了新的文献求助10
3秒前
GCD发布了新的文献求助10
4秒前
现代破茧发布了新的文献求助30
4秒前
激情的明杰完成签到,获得积分10
4秒前
哭泣尔安完成签到 ,获得积分10
4秒前
安静雅阳发布了新的文献求助10
5秒前
Gitope完成签到,获得积分10
5秒前
饱满的秋白完成签到,获得积分10
5秒前
6秒前
6秒前
FashionBoy应助刘一帆采纳,获得10
7秒前
7秒前
积极无敌完成签到 ,获得积分10
8秒前
8秒前
tt发布了新的文献求助10
8秒前
米基哈发布了新的文献求助10
9秒前
深情安青应助zz采纳,获得10
9秒前
10秒前
科研通AI6应助济民财采纳,获得10
10秒前
vxdfff发布了新的文献求助10
11秒前
七月发布了新的文献求助10
11秒前
12秒前
子车茗应助zzzzzp采纳,获得30
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
执着谷兰发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111177
求助须知:如何正确求助?哪些是违规求助? 4319430
关于积分的说明 13457835
捐赠科研通 4149833
什么是DOI,文献DOI怎么找? 2273805
邀请新用户注册赠送积分活动 1275926
关于科研通互助平台的介绍 1214145