A Multistage Information Complementary Fusion Network Based on Flexible-Mixup for HSI-X Image Classification

计算机科学 多光谱图像 高光谱成像 人工智能 图像融合 模式识别(心理学) 合成孔径雷达 传感器融合 过程(计算) 上下文图像分类 遥感 数据挖掘 图像(数学) 地质学 操作系统
作者
Junjie Wang,Mengmeng Zhang,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2023.3300903
摘要

Mixup-based data augmentation has been proven to be beneficial to the regularization of models during training, especially in the remote-sensing field where the training data is scarce. However, in the process of data augmentation, the Mixup-based methods ignore the target proportion in different inputs and keep the linear insertion ratio consistent, which leads to the response of label space even if no effective objects are introduced in the mixed image due to the randomness of the augmentation process. Moreover, although some previous works have attempted to utilize different multimodal interaction strategies, they could not be well extended to various remote-sensing data combinations. To this end, a multistage information complementary fusion network based on flexible-mixup (Flex-MCFNet) is proposed for hyperspectral-X image classification. First, to bridge the gap between the mixed image and the label, a flexible-mixup (FlexMix) data augmentation strategy is designed, where the weight of the label increases with the ratio of the input image to prevent the negative impact on the label space because of the introduction of invalid information. More importantly, to summarize diverse remote-sensing data inputs including various modal supplements and uncertainties, a multistage information complementary fusion network (MCFNet) is developed. After extracting the features of hyperspectral and complementary modalities X-modal, including multispectral, synthetic aperture radar (SAR), and light detection and ranging (LiDAR) separately, the information between complementary modalities is fully interacted and enhanced through multiple stages of information complement and fusion, which is used for the final image classification. Extensive experimental results have demonstrated that Flex-MCFNet can not only effectively expand the training data, but also adequately regularize different data combinations to achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助正直冰露采纳,获得10
刚刚
lyy完成签到 ,获得积分10
1秒前
沈随便发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
灵巧荆发布了新的文献求助10
2秒前
丘奇发布了新的文献求助10
2秒前
2秒前
2秒前
通~发布了新的文献求助10
3秒前
3秒前
搜集达人应助FloppyWow采纳,获得10
3秒前
Musen发布了新的文献求助10
3秒前
pluto应助金宝采纳,获得10
4秒前
ii完成签到 ,获得积分10
4秒前
温言发布了新的文献求助10
4秒前
CodeCraft应助务实盼海采纳,获得10
5秒前
orixero应助JUSTs0so采纳,获得10
5秒前
6秒前
欣欣子完成签到 ,获得积分10
6秒前
顺利毕业发布了新的文献求助10
6秒前
西奥完成签到 ,获得积分10
6秒前
7秒前
春分夏至完成签到,获得积分10
7秒前
7秒前
远山完成签到 ,获得积分10
7秒前
7秒前
胖虎应助jiejie采纳,获得20
8秒前
HaoHao04完成签到 ,获得积分10
8秒前
Joshua发布了新的文献求助10
8秒前
乐观的莆完成签到,获得积分10
8秒前
9秒前
向日葵发布了新的文献求助10
9秒前
Orange应助白蕲采纳,获得10
9秒前
Neko完成签到,获得积分10
9秒前
Hello应助Chen采纳,获得10
9秒前
10秒前
研友_ZAVod8完成签到,获得积分10
10秒前
明月清风发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762