A Multistage Information Complementary Fusion Network Based on Flexible-Mixup for HSI-X Image Classification

计算机科学 多光谱图像 高光谱成像 人工智能 图像融合 模式识别(心理学) 合成孔径雷达 传感器融合 过程(计算) 航空影像 遥感 数据挖掘 图像(数学) 地质学 操作系统
作者
Junjie Wang,Mengmeng Zhang,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 17189-17201 被引量:32
标识
DOI:10.1109/tnnls.2023.3300903
摘要

Mixup-based data augmentation has been proven to be beneficial to the regularization of models during training, especially in the remote-sensing field where the training data is scarce. However, in the process of data augmentation, the Mixup-based methods ignore the target proportion in different inputs and keep the linear insertion ratio consistent, which leads to the response of label space even if no effective objects are introduced in the mixed image due to the randomness of the augmentation process. Moreover, although some previous works have attempted to utilize different multimodal interaction strategies, they could not be well extended to various remote-sensing data combinations. To this end, a multistage information complementary fusion network based on flexible-mixup (Flex-MCFNet) is proposed for hyperspectral-X image classification. First, to bridge the gap between the mixed image and the label, a flexible-mixup (FlexMix) data augmentation strategy is designed, where the weight of the label increases with the ratio of the input image to prevent the negative impact on the label space because of the introduction of invalid information. More importantly, to summarize diverse remote-sensing data inputs including various modal supplements and uncertainties, a multistage information complementary fusion network (MCFNet) is developed. After extracting the features of hyperspectral and complementary modalities X-modal, including multispectral, synthetic aperture radar (SAR), and light detection and ranging (LiDAR) separately, the information between complementary modalities is fully interacted and enhanced through multiple stages of information complement and fusion, which is used for the final image classification. Extensive experimental results have demonstrated that Flex-MCFNet can not only effectively expand the training data, but also adequately regularize different data combinations to achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动以云完成签到,获得积分20
刚刚
归尘应助顺其自然_666888采纳,获得10
1秒前
Layla101完成签到,获得积分10
1秒前
脑洞疼应助称心的天问采纳,获得10
1秒前
汉堡包应助孙军涛采纳,获得10
1秒前
2秒前
2秒前
lky完成签到,获得积分10
3秒前
尾巴抓不住我完成签到,获得积分10
3秒前
极客晨风发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
秋日繁星完成签到,获得积分20
3秒前
文艺语蓉完成签到 ,获得积分10
4秒前
木子小微完成签到,获得积分10
4秒前
活着完成签到 ,获得积分10
4秒前
自信板栗发布了新的文献求助10
4秒前
铱铱的胡萝卜完成签到,获得积分10
5秒前
chem完成签到,获得积分10
6秒前
7秒前
carlitos发布了新的文献求助10
7秒前
凶狠的雁芙完成签到,获得积分10
7秒前
7秒前
7秒前
无极微光应助小熊梅尼耶采纳,获得20
8秒前
8秒前
petrichor完成签到,获得积分10
9秒前
Redamancy完成签到,获得积分20
9秒前
Asuka完成签到 ,获得积分10
10秒前
李健应助韩晨晨采纳,获得20
10秒前
专注白昼完成签到,获得积分10
11秒前
孙军涛发布了新的文献求助10
11秒前
12秒前
秋日繁星发布了新的文献求助10
12秒前
健忘的芷荷完成签到,获得积分10
12秒前
嵇灵竹发布了新的文献求助10
13秒前
天天发布了新的文献求助10
13秒前
ldkshifo完成签到,获得积分10
13秒前
今天摸了吗完成签到,获得积分10
13秒前
科研通AI6应助极客晨风采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249