亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multistage Information Complementary Fusion Network Based on Flexible-Mixup for HSI-X Image Classification

计算机科学 多光谱图像 高光谱成像 人工智能 图像融合 模式识别(心理学) 合成孔径雷达 传感器融合 过程(计算) 上下文图像分类 遥感 数据挖掘 图像(数学) 地质学 操作系统
作者
Junjie Wang,Mengmeng Zhang,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2023.3300903
摘要

Mixup-based data augmentation has been proven to be beneficial to the regularization of models during training, especially in the remote-sensing field where the training data is scarce. However, in the process of data augmentation, the Mixup-based methods ignore the target proportion in different inputs and keep the linear insertion ratio consistent, which leads to the response of label space even if no effective objects are introduced in the mixed image due to the randomness of the augmentation process. Moreover, although some previous works have attempted to utilize different multimodal interaction strategies, they could not be well extended to various remote-sensing data combinations. To this end, a multistage information complementary fusion network based on flexible-mixup (Flex-MCFNet) is proposed for hyperspectral-X image classification. First, to bridge the gap between the mixed image and the label, a flexible-mixup (FlexMix) data augmentation strategy is designed, where the weight of the label increases with the ratio of the input image to prevent the negative impact on the label space because of the introduction of invalid information. More importantly, to summarize diverse remote-sensing data inputs including various modal supplements and uncertainties, a multistage information complementary fusion network (MCFNet) is developed. After extracting the features of hyperspectral and complementary modalities X-modal, including multispectral, synthetic aperture radar (SAR), and light detection and ranging (LiDAR) separately, the information between complementary modalities is fully interacted and enhanced through multiple stages of information complement and fusion, which is used for the final image classification. Extensive experimental results have demonstrated that Flex-MCFNet can not only effectively expand the training data, but also adequately regularize different data combinations to achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助沙糖桔采纳,获得10
40秒前
1分钟前
wenwen完成签到 ,获得积分10
1分钟前
1分钟前
默默尔安完成签到 ,获得积分10
1分钟前
王仙人发布了新的文献求助10
1分钟前
动听的飞松完成签到 ,获得积分10
2分钟前
merrylake完成签到 ,获得积分10
2分钟前
殷勤的晓夏完成签到,获得积分20
2分钟前
烟花应助王仙人采纳,获得10
2分钟前
2分钟前
王仙人完成签到,获得积分20
2分钟前
2分钟前
3分钟前
to完成签到 ,获得积分10
3分钟前
爱心完成签到 ,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
coco发布了新的文献求助10
3分钟前
沙糖桔关注了科研通微信公众号
4分钟前
4分钟前
4分钟前
zedhumble发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
搜集达人应助zedhumble采纳,获得10
4分钟前
4分钟前
沙糖桔发布了新的文献求助10
4分钟前
5分钟前
green发布了新的文献求助10
5分钟前
huangyao完成签到 ,获得积分10
5分钟前
Hello应助green采纳,获得50
5分钟前
野性的盼柳完成签到 ,获得积分20
5分钟前
乐乐乐乐乐乐应助huangyao采纳,获得10
5分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
Hello应助寒冷的亦凝采纳,获得10
6分钟前
6分钟前
爱笑的栀虞完成签到 ,获得积分10
8分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805697
关于积分的说明 7865761
捐赠科研通 2463927
什么是DOI,文献DOI怎么找? 1311677
科研通“疑难数据库(出版商)”最低求助积分说明 629677
版权声明 601853