A Multistage Information Complementary Fusion Network Based on Flexible-Mixup for HSI-X Image Classification

计算机科学 多光谱图像 高光谱成像 人工智能 图像融合 模式识别(心理学) 合成孔径雷达 传感器融合 过程(计算) 航空影像 遥感 数据挖掘 图像(数学) 操作系统 地质学
作者
Junjie Wang,Mengmeng Zhang,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 17189-17201 被引量:32
标识
DOI:10.1109/tnnls.2023.3300903
摘要

Mixup-based data augmentation has been proven to be beneficial to the regularization of models during training, especially in the remote-sensing field where the training data is scarce. However, in the process of data augmentation, the Mixup-based methods ignore the target proportion in different inputs and keep the linear insertion ratio consistent, which leads to the response of label space even if no effective objects are introduced in the mixed image due to the randomness of the augmentation process. Moreover, although some previous works have attempted to utilize different multimodal interaction strategies, they could not be well extended to various remote-sensing data combinations. To this end, a multistage information complementary fusion network based on flexible-mixup (Flex-MCFNet) is proposed for hyperspectral-X image classification. First, to bridge the gap between the mixed image and the label, a flexible-mixup (FlexMix) data augmentation strategy is designed, where the weight of the label increases with the ratio of the input image to prevent the negative impact on the label space because of the introduction of invalid information. More importantly, to summarize diverse remote-sensing data inputs including various modal supplements and uncertainties, a multistage information complementary fusion network (MCFNet) is developed. After extracting the features of hyperspectral and complementary modalities X-modal, including multispectral, synthetic aperture radar (SAR), and light detection and ranging (LiDAR) separately, the information between complementary modalities is fully interacted and enhanced through multiple stages of information complement and fusion, which is used for the final image classification. Extensive experimental results have demonstrated that Flex-MCFNet can not only effectively expand the training data, but also adequately regularize different data combinations to achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉酱完成签到 ,获得积分10
1秒前
1秒前
刘柳完成签到 ,获得积分10
2秒前
领导范儿应助Re采纳,获得10
2秒前
别吃我的鱼完成签到,获得积分10
2秒前
astray完成签到,获得积分10
3秒前
毛毛发布了新的文献求助10
3秒前
华仔应助lj采纳,获得10
4秒前
wmx完成签到,获得积分20
4秒前
4秒前
aniu发布了新的文献求助10
4秒前
孙福禄应助暖冬22采纳,获得10
5秒前
5秒前
陈静123发布了新的文献求助10
5秒前
ynchendt完成签到,获得积分10
6秒前
伶俐的安波完成签到,获得积分10
6秒前
停婷发布了新的文献求助10
6秒前
leisure发布了新的文献求助10
6秒前
完美世界应助HGQ采纳,获得10
6秒前
聪明的三问完成签到,获得积分10
7秒前
小young完成签到 ,获得积分10
8秒前
霸气乘风发布了新的文献求助20
9秒前
HenryXiao发布了新的文献求助10
10秒前
科研通AI2S应助wmx采纳,获得10
10秒前
10秒前
yaoyulin完成签到,获得积分20
11秒前
xyx945应助苹果采纳,获得10
11秒前
羞涩的怀蝶完成签到,获得积分10
12秒前
舍瓦完成签到,获得积分10
12秒前
12秒前
Hello应助书虫采纳,获得10
13秒前
13秒前
FashionBoy应助leisure采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
与山发布了新的文献求助10
16秒前
zyw发布了新的文献求助10
17秒前
朦胧的晓山完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650