亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multistage Information Complementary Fusion Network Based on Flexible-Mixup for HSI-X Image Classification

计算机科学 多光谱图像 高光谱成像 人工智能 图像融合 模式识别(心理学) 合成孔径雷达 传感器融合 过程(计算) 航空影像 遥感 数据挖掘 图像(数学) 操作系统 地质学
作者
Junjie Wang,Mengmeng Zhang,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 17189-17201 被引量:32
标识
DOI:10.1109/tnnls.2023.3300903
摘要

Mixup-based data augmentation has been proven to be beneficial to the regularization of models during training, especially in the remote-sensing field where the training data is scarce. However, in the process of data augmentation, the Mixup-based methods ignore the target proportion in different inputs and keep the linear insertion ratio consistent, which leads to the response of label space even if no effective objects are introduced in the mixed image due to the randomness of the augmentation process. Moreover, although some previous works have attempted to utilize different multimodal interaction strategies, they could not be well extended to various remote-sensing data combinations. To this end, a multistage information complementary fusion network based on flexible-mixup (Flex-MCFNet) is proposed for hyperspectral-X image classification. First, to bridge the gap between the mixed image and the label, a flexible-mixup (FlexMix) data augmentation strategy is designed, where the weight of the label increases with the ratio of the input image to prevent the negative impact on the label space because of the introduction of invalid information. More importantly, to summarize diverse remote-sensing data inputs including various modal supplements and uncertainties, a multistage information complementary fusion network (MCFNet) is developed. After extracting the features of hyperspectral and complementary modalities X-modal, including multispectral, synthetic aperture radar (SAR), and light detection and ranging (LiDAR) separately, the information between complementary modalities is fully interacted and enhanced through multiple stages of information complement and fusion, which is used for the final image classification. Extensive experimental results have demonstrated that Flex-MCFNet can not only effectively expand the training data, but also adequately regularize different data combinations to achieve state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
陈旧完成签到,获得积分10
2秒前
5秒前
5秒前
欣欣子完成签到,获得积分10
6秒前
虚拟的清炎完成签到 ,获得积分10
8秒前
sunstar完成签到,获得积分10
9秒前
XXXXXX发布了新的文献求助10
12秒前
yxl完成签到,获得积分10
13秒前
可耐的盈完成签到,获得积分10
16秒前
绿毛水怪完成签到,获得积分10
19秒前
yg发布了新的文献求助10
21秒前
lsc完成签到,获得积分10
23秒前
XXXXXX完成签到,获得积分10
25秒前
25秒前
星星科语完成签到,获得积分20
25秒前
小fei完成签到,获得积分10
27秒前
andrele发布了新的文献求助10
30秒前
麻辣薯条完成签到,获得积分10
30秒前
hanlin给滕祥的求助进行了留言
32秒前
时尚身影完成签到,获得积分10
34秒前
leoduo完成签到,获得积分0
37秒前
ryx发布了新的文献求助10
39秒前
流苏2完成签到,获得积分10
40秒前
41秒前
斯文败类应助科研通管家采纳,获得30
43秒前
上官若男应助科研通管家采纳,获得10
43秒前
48秒前
52秒前
绍华发布了新的文献求助10
56秒前
可耐的月饼完成签到 ,获得积分10
59秒前
RaskoRR发布了新的文献求助10
59秒前
小小虾完成签到 ,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
自信号厂完成签到 ,获得积分0
1分钟前
NexusExplorer应助ryx采纳,获得10
1分钟前
简单完成签到,获得积分20
1分钟前
ryx完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187