Can Transformer and GNN Help Each Other?

计算机科学 编码 变压器 图形 理论计算机科学 人工智能 数据挖掘 机器学习 分布式计算 物理 量子力学 电压 生物化学 化学 基因
作者
Peiyan Zhang,Yuchen Yan,Chaozhuo Li,Senzhang Wang,Xing Xie,Sunghun Kim
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2308.14355
摘要

Graph Neural Networks (GNNs) have emerged as promising solutions for collaborative filtering (CF) through the modeling of user-item interaction graphs. The nucleus of existing GNN-based recommender systems involves recursive message passing along user-item interaction edges to refine encoded embeddings. Despite their demonstrated effectiveness, current GNN-based methods encounter challenges of limited receptive fields and the presence of noisy ``interest-irrelevant'' connections. In contrast, Transformer-based methods excel in aggregating information adaptively and globally. Nevertheless, their application to large-scale interaction graphs is hindered by inherent complexities and challenges in capturing intricate, entangled structural information. In this paper, we propose TransGNN, a novel model that integrates Transformer and GNN layers in an alternating fashion to mutually enhance their capabilities. Specifically, TransGNN leverages Transformer layers to broaden the receptive field and disentangle information aggregation from edges, which aggregates information from more relevant nodes, thereby enhancing the message passing of GNNs. Additionally, to capture graph structure information effectively, positional encoding is meticulously designed and integrated into GNN layers to encode such structural knowledge into node attributes, thus enhancing the Transformer's performance on graphs. Efficiency considerations are also alleviated by proposing the sampling of the most relevant nodes for the Transformer, along with two efficient sample update strategies to reduce complexity. Furthermore, theoretical analysis demonstrates that TransGNN offers increased expressiveness compared to GNNs, with only a marginal increase in linear complexity. Extensive experiments on five public datasets validate the effectiveness and efficiency of TransGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助执笔客采纳,获得10
刚刚
baek完成签到,获得积分20
刚刚
李白完成签到,获得积分10
1秒前
lily2025发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
清茗完成签到,获得积分10
3秒前
3秒前
我睡觉的时候不困完成签到,获得积分10
4秒前
晨雨初听完成签到,获得积分10
4秒前
小蘑菇应助博士后采纳,获得10
4秒前
4秒前
5秒前
sunshine发布了新的文献求助10
5秒前
一小只发布了新的文献求助10
5秒前
5秒前
5秒前
臧臧发布了新的文献求助10
6秒前
Eve丶Paopaoxuan应助guofd采纳,获得10
6秒前
BIUBIU发布了新的文献求助10
6秒前
顺鑫发布了新的文献求助10
7秒前
7秒前
小赞芽发布了新的文献求助10
7秒前
Hermione完成签到,获得积分10
7秒前
深情安青应助小九采纳,获得10
8秒前
晨雨初听发布了新的文献求助10
8秒前
HonglinGao发布了新的文献求助30
8秒前
李白白白完成签到,获得积分10
9秒前
嗯哼完成签到,获得积分10
9秒前
6666完成签到,获得积分10
9秒前
超级瑶瑶发布了新的文献求助10
10秒前
faye发布了新的文献求助10
10秒前
11秒前
钟叉烧发布了新的文献求助10
11秒前
小杨完成签到,获得积分10
12秒前
君君完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589616
求助须知:如何正确求助?哪些是违规求助? 3157911
关于积分的说明 9517962
捐赠科研通 2860977
什么是DOI,文献DOI怎么找? 1572123
邀请新用户注册赠送积分活动 737702
科研通“疑难数据库(出版商)”最低求助积分说明 722522