数学
班级(哲学)
泊松分布
薛定谔猫
山口定理
应用数学
数学分析
数学物理
纯数学
非线性系统
量子力学
统计
物理
人工智能
计算机科学
作者
Jin-Fu Yang,Jiafeng Zhang,Wenmin Li,Qin Qin
标识
DOI:10.1080/17476933.2023.2250736
摘要
AbstractIn this paper, we study the following kind of Schrödinger–Poisson equations without any growth and Ambrosetti–Rabinowitz conditions: −Δu+V(x)u+(|x|−1∗u2)u−λu=f(u),x∈RN, where λ<0, V(x)∈C[0,+∞) is a potential function and satisfies certain conditions. By using variational method, truncation function and Fountain Theorem, we get the existence of infinitely many solutions to revised equations. Then we use the Moser iteration to obtain the existence of infinitely many solutions to original Schrödinger–Poisson equations.Keywords: Schrödinger–Poisson equationtruncation functionfountain theoremAMS Subject Classifications: 35A1535B38 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingSupported by the National Natural Science Foundation of China [grant number 11861021]; the Natural Science Research Project of Department of Education of Guizhou Province [grant number QJJ2022015, QJJ2022047]; the Natural Science Research Project of Guizhou Minzu University [grant number GZMUZK[2022]YB23].
科研通智能强力驱动
Strongly Powered by AbleSci AI