Identifying potential action points for improving sleep and mental health among employees: A network analysis

心理健康 动作(物理) 心理学 精神科 睡眠(系统调用) 医学 物理 计算机科学 量子力学 操作系统
作者
Bin Yu,Yao Fu,Shu Dong,Jan D. Reinhardt,Peng Jia,Shujuan Yang
出处
期刊:Sleep Medicine [Elsevier]
卷期号:113: 76-83 被引量:13
标识
DOI:10.1016/j.sleep.2023.11.020
摘要

Mental health issues are severe public health problems, inevitably affected by, also affecting, sleep. We used network analysis to estimate the relationship among various aspects of sleep and mental health simultaneously, and identify potential action points for improving sleep and mental health among employees. We used data from the baseline survey of the Chinese Cohort of Working Adults that recruited 31,105 employees between October 1st and December 31st, 2021. The mental health included anxiety (measured by the Generalized Anxiety Disorder-7), depression (Patient Health Questionnaire-9]), loneliness (Short Loneliness Scale), well-being (Short Scales of Flourishing and Positive and Negative Feelings), and implicit health attitude (Lay Theory of Health Measures). Seven dimensions of sleep were assessed by the Pittsburgh Sleep Quality Index. An undirected network model and two directed network approaches, including Bayesian Directed Acyclic Graphs (DAGs) and Evidence Synthesis for Constructing-DAGs (ESC-DAGs), were applied to investigate associations between variables and identify key variables. Depression, daytime dysfunction, and well-being were the "bridges" connecting the domains of sleep and mental health in the undirected network, and were in the main pathway connecting most variables in the Bayesian DAG. Anxiety constituted a gateway that activated other sleep and mental health variables, with sleep duration and implicit health attitude forming end points of the pathway. Similar directed pathways were confirmed in the ESC-DAG. Our network study suggests anxiety, depression, well-being, and daytime dysfunction may be potential action points in preventing the development of poor sleep and mental health outcomes for employees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ananan完成签到 ,获得积分10
刚刚
Yan_zm_zm发布了新的文献求助10
刚刚
1秒前
肥猫完成签到,获得积分10
1秒前
王然完成签到,获得积分10
2秒前
woodenfish完成签到,获得积分10
2秒前
zhong发布了新的文献求助10
2秒前
ll发布了新的文献求助10
3秒前
朴素代芙完成签到,获得积分10
3秒前
xiao6fan完成签到 ,获得积分10
3秒前
852应助缥缈丹秋采纳,获得10
4秒前
细心雨安完成签到,获得积分10
4秒前
刻苦听寒完成签到,获得积分10
4秒前
赘婿应助过过过采纳,获得10
5秒前
5秒前
生动的踏歌完成签到,获得积分10
5秒前
5秒前
张123发布了新的文献求助10
6秒前
DJDJDDDJ完成签到,获得积分10
6秒前
luochen完成签到,获得积分0
6秒前
标致的战斗机完成签到,获得积分10
7秒前
7秒前
咿呀完成签到,获得积分10
7秒前
bingsu108完成签到,获得积分10
8秒前
落寞白曼完成签到,获得积分10
8秒前
可爱的函函应助0001采纳,获得10
8秒前
天真的羊青完成签到 ,获得积分10
8秒前
teborlee完成签到,获得积分10
8秒前
阔达博完成签到,获得积分10
9秒前
千千发布了新的文献求助10
9秒前
细心雨安发布了新的文献求助10
10秒前
向阳完成签到,获得积分10
10秒前
Hello应助孔雀翎采纳,获得10
10秒前
彭金玲完成签到,获得积分10
10秒前
10秒前
11秒前
思源应助寒冷的咖啡采纳,获得10
12秒前
duotianzhiyi完成签到,获得积分10
12秒前
流云发布了新的文献求助80
12秒前
Darline完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470845
求助须知:如何正确求助?哪些是违规求助? 4573639
关于积分的说明 14339991
捐赠科研通 4500736
什么是DOI,文献DOI怎么找? 2465954
邀请新用户注册赠送积分活动 1454191
关于科研通互助平台的介绍 1428872