清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identifying potential action points for improving sleep and mental health among employees: A network analysis

心理健康 动作(物理) 心理学 精神科 睡眠(系统调用) 医学 物理 计算机科学 量子力学 操作系统
作者
Bin Yu,Yao Fu,Shu Dong,Jan D. Reinhardt,Peng Jia,Shujuan Yang
出处
期刊:Sleep Medicine [Elsevier]
卷期号:113: 76-83 被引量:13
标识
DOI:10.1016/j.sleep.2023.11.020
摘要

Mental health issues are severe public health problems, inevitably affected by, also affecting, sleep. We used network analysis to estimate the relationship among various aspects of sleep and mental health simultaneously, and identify potential action points for improving sleep and mental health among employees. We used data from the baseline survey of the Chinese Cohort of Working Adults that recruited 31,105 employees between October 1st and December 31st, 2021. The mental health included anxiety (measured by the Generalized Anxiety Disorder-7), depression (Patient Health Questionnaire-9]), loneliness (Short Loneliness Scale), well-being (Short Scales of Flourishing and Positive and Negative Feelings), and implicit health attitude (Lay Theory of Health Measures). Seven dimensions of sleep were assessed by the Pittsburgh Sleep Quality Index. An undirected network model and two directed network approaches, including Bayesian Directed Acyclic Graphs (DAGs) and Evidence Synthesis for Constructing-DAGs (ESC-DAGs), were applied to investigate associations between variables and identify key variables. Depression, daytime dysfunction, and well-being were the "bridges" connecting the domains of sleep and mental health in the undirected network, and were in the main pathway connecting most variables in the Bayesian DAG. Anxiety constituted a gateway that activated other sleep and mental health variables, with sleep duration and implicit health attitude forming end points of the pathway. Similar directed pathways were confirmed in the ESC-DAG. Our network study suggests anxiety, depression, well-being, and daytime dysfunction may be potential action points in preventing the development of poor sleep and mental health outcomes for employees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
酷酷海豚完成签到,获得积分10
36秒前
mengliu完成签到,获得积分0
57秒前
1分钟前
cr发布了新的文献求助10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
dream完成签到 ,获得积分10
1分钟前
2分钟前
琳io完成签到 ,获得积分10
2分钟前
laohei94_6完成签到 ,获得积分10
2分钟前
2分钟前
无花果应助紫色奶萨采纳,获得10
2分钟前
2分钟前
科研通AI2S应助arsenal采纳,获得10
2分钟前
狂野宛凝发布了新的文献求助10
2分钟前
2分钟前
光亮静槐完成签到 ,获得积分10
2分钟前
Echopotter发布了新的文献求助10
2分钟前
紫色奶萨发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Echopotter完成签到,获得积分10
3分钟前
3分钟前
Jenny发布了新的文献求助30
3分钟前
liwen发布了新的文献求助100
3分钟前
3分钟前
科研通AI2S应助ceeray23采纳,获得20
3分钟前
斯提亚拉发布了新的文献求助10
3分钟前
牛黄完成签到 ,获得积分10
3分钟前
Orange应助科研通管家采纳,获得20
3分钟前
量子星尘发布了新的文献求助10
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
ceeray23发布了新的文献求助30
4分钟前
4分钟前
袁青寒发布了新的文献求助10
4分钟前
zxq完成签到 ,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
lucky完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503