清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identifying potential action points for improving sleep and mental health among employees: A network analysis

心理健康 动作(物理) 心理学 精神科 睡眠(系统调用) 医学 物理 计算机科学 量子力学 操作系统
作者
Bin Yu,Yao Fu,Shu Dong,Jan D. Reinhardt,Peng Jia,Shujuan Yang
出处
期刊:Sleep Medicine [Elsevier BV]
卷期号:113: 76-83 被引量:9
标识
DOI:10.1016/j.sleep.2023.11.020
摘要

Mental health issues are severe public health problems, inevitably affected by, also affecting, sleep. We used network analysis to estimate the relationship among various aspects of sleep and mental health simultaneously, and identify potential action points for improving sleep and mental health among employees. We used data from the baseline survey of the Chinese Cohort of Working Adults that recruited 31,105 employees between October 1st and December 31st, 2021. The mental health included anxiety (measured by the Generalized Anxiety Disorder-7), depression (Patient Health Questionnaire-9]), loneliness (Short Loneliness Scale), well-being (Short Scales of Flourishing and Positive and Negative Feelings), and implicit health attitude (Lay Theory of Health Measures). Seven dimensions of sleep were assessed by the Pittsburgh Sleep Quality Index. An undirected network model and two directed network approaches, including Bayesian Directed Acyclic Graphs (DAGs) and Evidence Synthesis for Constructing-DAGs (ESC-DAGs), were applied to investigate associations between variables and identify key variables. Depression, daytime dysfunction, and well-being were the "bridges" connecting the domains of sleep and mental health in the undirected network, and were in the main pathway connecting most variables in the Bayesian DAG. Anxiety constituted a gateway that activated other sleep and mental health variables, with sleep duration and implicit health attitude forming end points of the pathway. Similar directed pathways were confirmed in the ESC-DAG. Our network study suggests anxiety, depression, well-being, and daytime dysfunction may be potential action points in preventing the development of poor sleep and mental health outcomes for employees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助快乐的冰岚采纳,获得10
2秒前
cheney完成签到 ,获得积分10
5秒前
weihe完成签到,获得积分10
14秒前
17秒前
slzhao发布了新的文献求助10
21秒前
笔墨纸砚完成签到 ,获得积分10
26秒前
42秒前
酷酷小子完成签到 ,获得积分0
59秒前
文献完成签到 ,获得积分10
1分钟前
1分钟前
萌大叔发布了新的文献求助10
1分钟前
培培完成签到 ,获得积分10
1分钟前
末末完成签到 ,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
upupup完成签到 ,获得积分10
2分钟前
慧子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
MOREMO完成签到,获得积分10
2分钟前
laoli2022完成签到,获得积分10
2分钟前
一见憘完成签到 ,获得积分10
3分钟前
3分钟前
JESSE发布了新的文献求助10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
fabea完成签到,获得积分10
3分钟前
江三村完成签到 ,获得积分0
3分钟前
3分钟前
Arvin发布了新的文献求助10
3分钟前
3分钟前
萧萧完成签到,获得积分10
3分钟前
4分钟前
crystaler完成签到 ,获得积分10
4分钟前
Arvin完成签到,获得积分10
4分钟前
4分钟前
samuel发布了新的文献求助10
4分钟前
1中蓝完成签到 ,获得积分10
4分钟前
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
儒雅黑裤完成签到 ,获得积分10
4分钟前
df完成签到 ,获得积分10
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211911
求助须知:如何正确求助?哪些是违规求助? 4388251
关于积分的说明 13663692
捐赠科研通 4248578
什么是DOI,文献DOI怎么找? 2331051
邀请新用户注册赠送积分活动 1328776
关于科研通互助平台的介绍 1281955