Identifying potential action points for improving sleep and mental health among employees: A network analysis

心理健康 动作(物理) 心理学 精神科 睡眠(系统调用) 医学 物理 计算机科学 量子力学 操作系统
作者
Bin Yu,Yao Fu,Shu Dong,Jan D. Reinhardt,Peng Jia,Shujuan Yang
出处
期刊:Sleep Medicine [Elsevier]
卷期号:113: 76-83 被引量:13
标识
DOI:10.1016/j.sleep.2023.11.020
摘要

Mental health issues are severe public health problems, inevitably affected by, also affecting, sleep. We used network analysis to estimate the relationship among various aspects of sleep and mental health simultaneously, and identify potential action points for improving sleep and mental health among employees. We used data from the baseline survey of the Chinese Cohort of Working Adults that recruited 31,105 employees between October 1st and December 31st, 2021. The mental health included anxiety (measured by the Generalized Anxiety Disorder-7), depression (Patient Health Questionnaire-9]), loneliness (Short Loneliness Scale), well-being (Short Scales of Flourishing and Positive and Negative Feelings), and implicit health attitude (Lay Theory of Health Measures). Seven dimensions of sleep were assessed by the Pittsburgh Sleep Quality Index. An undirected network model and two directed network approaches, including Bayesian Directed Acyclic Graphs (DAGs) and Evidence Synthesis for Constructing-DAGs (ESC-DAGs), were applied to investigate associations between variables and identify key variables. Depression, daytime dysfunction, and well-being were the "bridges" connecting the domains of sleep and mental health in the undirected network, and were in the main pathway connecting most variables in the Bayesian DAG. Anxiety constituted a gateway that activated other sleep and mental health variables, with sleep duration and implicit health attitude forming end points of the pathway. Similar directed pathways were confirmed in the ESC-DAG. Our network study suggests anxiety, depression, well-being, and daytime dysfunction may be potential action points in preventing the development of poor sleep and mental health outcomes for employees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山茶花完成签到,获得积分10
刚刚
成就的听露完成签到,获得积分20
刚刚
王倩发布了新的文献求助10
刚刚
慕青应助sad采纳,获得10
刚刚
Gina发布了新的文献求助10
1秒前
ASSA应助孤星采纳,获得10
1秒前
科研通AI6应助韦巧采纳,获得10
1秒前
Luckqi6688发布了新的文献求助200
1秒前
ZHONGJIAHAO发布了新的文献求助10
1秒前
bosheng发布了新的文献求助10
2秒前
1212发布了新的文献求助10
2秒前
2秒前
勤奋的熊猫完成签到,获得积分20
2秒前
要减肥紫山完成签到,获得积分10
3秒前
luyang完成签到,获得积分10
3秒前
zuoshoubo完成签到,获得积分10
4秒前
这波你的吗完成签到,获得积分20
4秒前
4秒前
wangli发布了新的文献求助10
4秒前
4秒前
单纯尔珍完成签到,获得积分10
5秒前
5秒前
Lycerdoctor发布了新的文献求助10
5秒前
mc完成签到,获得积分10
5秒前
Bio应助大观天下采纳,获得30
5秒前
明月完成签到,获得积分10
5秒前
小章子冰箱完成签到,获得积分10
5秒前
6秒前
6秒前
上官若男应助安白采纳,获得10
6秒前
上官若男应助王一鸣采纳,获得10
6秒前
乐乐应助王欧尼采纳,获得10
7秒前
小蘑菇应助小郭大夫采纳,获得10
7秒前
7秒前
8秒前
孙友浩发布了新的文献求助10
8秒前
8秒前
9秒前
慕青应助heheha采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767