A novel formulation of RNN-based neural network with real-time updating – An application for dynamic hydraulic fractured shale gas production forecasting

计算机科学 均方误差 背景(考古学) 人工神经网络 再培训 数据挖掘 循环神经网络 生产(经济) 可靠性(半导体) 回归 机器学习 人工智能 统计 地质学 数学 业务 功率(物理) 经济 国际贸易 古生物学 宏观经济学 物理 量子力学
作者
Ziming Xu,Juliana Y. Leung
标识
DOI:10.1016/j.geoen.2023.212491
摘要

The Recurrent Neural Network (RNN) has found extensive application in production forecasting for fractured reservoirs, particularly excelling at accurately predicting self-regression in late-life prediction for wells with substantial historical data. However, forecasting for new wells or those with limited historical data presents greater challenges. The main difference lies in the insufficiency of historical data, which requires meaningful integration of a continuous production data stream to enhance prediction results. In the context of utilizing real-time data and continuously updating predictions, many existing formulations of RNN-based models in the literature either utilize inputs of sub-sequences instead of the entire sequence or require retraining of the entire model to handle new data and update the predictions. Therefore, we propose a novel prediction framework called Recurrent Updated Forecasting (RUF). This framework considers the entire time series structure, improves accuracy and training efficiency, and allows for prediction updates without retraining. In scenarios without production data, we employ a Radial Basis Function Network (RBFN) to initialize the process. Once more extended production history becomes available, it can be utilized to enhance prediction results. We present a case study based on both synthetic and field data from the Montney shale gas reservoir, considering different production-related features as inputs to predict gas production rates over a three-year period. The proposed method is evaluated using the P10, P50, and P90 values of the testing Root Mean Square Error (RMSE). The results demonstrate that our method outperforms existing approaches, exhibiting outstanding efficiency, reliability, and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小西完成签到 ,获得积分10
1秒前
杉树完成签到 ,获得积分10
2秒前
至秦发布了新的文献求助10
2秒前
li发布了新的文献求助30
4秒前
77完成签到,获得积分10
4秒前
酷波er应助吴吧啦采纳,获得10
5秒前
6秒前
请叫我风吹麦浪应助alick采纳,获得10
6秒前
超级萌琦完成签到,获得积分10
6秒前
6秒前
一颗小白菜完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
11秒前
ersanli关注了科研通微信公众号
12秒前
reflux举报耶耶耶求助涉嫌违规
13秒前
BR发布了新的文献求助10
13秒前
丘比特应助微信研友采纳,获得10
13秒前
非盈完成签到,获得积分20
14秒前
深情安青应助科研小白采纳,获得10
15秒前
15秒前
陈陈发布了新的文献求助10
15秒前
Dr.完成签到 ,获得积分10
15秒前
15秒前
huanglu发布了新的文献求助10
16秒前
nanazi完成签到,获得积分10
16秒前
qc发布了新的文献求助10
16秒前
wanci应助Seldomyg采纳,获得10
16秒前
17秒前
希望天下0贩的0应助Ash采纳,获得10
17秒前
因一完成签到,获得积分10
17秒前
Owen应助悠咪采纳,获得10
19秒前
宋美美完成签到,获得积分10
20秒前
20秒前
沈剑心发布了新的文献求助10
21秒前
Ryan0824完成签到,获得积分10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331