溴仿
三卤甲烷
化学
氯仿
溴化物
天然有机质
环境化学
氯
水处理
溶解有机碳
有机质
环境工程
色谱法
环境科学
有机化学
作者
Shakhawat Chowdhury,Karim Sattar,Syed Masiur Rahman
标识
DOI:10.1016/j.scitotenv.2023.167595
摘要
Many disinfection byproducts (DBPs) in drinking water can pose cancer risks to humans while several DBPs including trihalomethanes are typically regulated. Although trihalomethanes are regulated, brominated fractions (bromodichloromethane, dibromochloromethane and bromoform) are more toxic to humans than the chlorinated ones (chloroform). To date, >100 models have been reported to predict DBPs. However, models to predict individual trihalomethanes are very limited, indicating the needs of such models. Various factors including natural organic matter (NOM), bromide ions (Br-), disinfectants (e.g., chlorine dose), pH, temperature and reaction time affect the formation and distribution of trihalomethanes in drinking water. In this study, NOM was fractionated into four groups based on the molecular weight (MW) cutoff values and their respective contributions to dissolved organic carbon (DOC), trihalomethanes and bromide incorporation factors (BIF) were investigated. Models were developed for predicting chloroform, bromodichloromethane, dibromochloromethane, bromoform and trihalomethanes. Three machine learning techniques: Support Vector Regressor (SVR), Random Forest Regressor (RFR) and Artificial Neural Networks (ANN) were adopted for training and testing the models. The normalized BIFs were in the ranges of 0.08-0.16 and 0.07-0.15 per mg/L of DOC for pH 6.0 and 8.5 respectively. The BIFs were higher for lower pH and MW values while increase of bromide to chlorine ratios increased BIFs. The models showed excellent predictive performances in training (R2 = 0.889-0.998) and testing (R2 = 0.870-0.988) datasets. The SVR and RFR models showed the best performances with lower RMSE and MAE in most cases. These models can be used to better control different trihalomethanes in drinking water to maintain regulatory compliance, and to minimize the risks to humans.
科研通智能强力驱动
Strongly Powered by AbleSci AI