亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigating bromide incorporation factor (BIF) and model development for predicting THMs in drinking water using machine learning

溴仿 三卤甲烷 化学 氯仿 溴化物 天然有机质 环境化学 水处理 溶解有机碳 有机质 环境工程 色谱法 环境科学 有机化学
作者
Shakhawat Chowdhury,Karim Sattar,Syed Masiur Rahman
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:906: 167595-167595 被引量:1
标识
DOI:10.1016/j.scitotenv.2023.167595
摘要

Many disinfection byproducts (DBPs) in drinking water can pose cancer risks to humans while several DBPs including trihalomethanes are typically regulated. Although trihalomethanes are regulated, brominated fractions (bromodichloromethane, dibromochloromethane and bromoform) are more toxic to humans than the chlorinated ones (chloroform). To date, >100 models have been reported to predict DBPs. However, models to predict individual trihalomethanes are very limited, indicating the needs of such models. Various factors including natural organic matter (NOM), bromide ions (Br-), disinfectants (e.g., chlorine dose), pH, temperature and reaction time affect the formation and distribution of trihalomethanes in drinking water. In this study, NOM was fractionated into four groups based on the molecular weight (MW) cutoff values and their respective contributions to dissolved organic carbon (DOC), trihalomethanes and bromide incorporation factors (BIF) were investigated. Models were developed for predicting chloroform, bromodichloromethane, dibromochloromethane, bromoform and trihalomethanes. Three machine learning techniques: Support Vector Regressor (SVR), Random Forest Regressor (RFR) and Artificial Neural Networks (ANN) were adopted for training and testing the models. The normalized BIFs were in the ranges of 0.08-0.16 and 0.07-0.15 per mg/L of DOC for pH 6.0 and 8.5 respectively. The BIFs were higher for lower pH and MW values while increase of bromide to chlorine ratios increased BIFs. The models showed excellent predictive performances in training (R2 = 0.889-0.998) and testing (R2 = 0.870-0.988) datasets. The SVR and RFR models showed the best performances with lower RMSE and MAE in most cases. These models can be used to better control different trihalomethanes in drinking water to maintain regulatory compliance, and to minimize the risks to humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
勤恳元槐完成签到 ,获得积分10
13秒前
18秒前
26秒前
27秒前
orixero应助科研通管家采纳,获得10
27秒前
Bressanone发布了新的文献求助30
34秒前
Bressanone完成签到,获得积分10
44秒前
YL完成签到,获得积分20
47秒前
西河发布了新的文献求助10
50秒前
嗯哼应助白华苍松采纳,获得20
52秒前
李彤完成签到,获得积分20
52秒前
55秒前
59秒前
kikeva完成签到,获得积分10
1分钟前
1分钟前
hsy发布了新的文献求助10
1分钟前
1分钟前
kikeva发布了新的文献求助10
1分钟前
朴朴呀发布了新的文献求助10
1分钟前
hsy完成签到,获得积分10
1分钟前
不爱吃香菜完成签到 ,获得积分10
1分钟前
1分钟前
YL发布了新的文献求助30
1分钟前
NNN7完成签到,获得积分10
1分钟前
李彤发布了新的文献求助10
1分钟前
1分钟前
Teddy4731完成签到,获得积分20
1分钟前
susiyiyi发布了新的文献求助10
1分钟前
andrele应助七绝采纳,获得10
2分钟前
可夫司机完成签到 ,获得积分10
2分钟前
2分钟前
Suyi发布了新的文献求助10
3分钟前
jindui完成签到 ,获得积分10
3分钟前
嘚嘚完成签到,获得积分10
3分钟前
3分钟前
归海梦岚完成签到,获得积分0
4分钟前
taku完成签到 ,获得积分10
4分钟前
鸽们们完成签到,获得积分10
4分钟前
深情寒松给深情寒松的求助进行了留言
4分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179828
求助须知:如何正确求助?哪些是违规求助? 2830333
关于积分的说明 7976304
捐赠科研通 2491819
什么是DOI,文献DOI怎么找? 1328949
科研通“疑难数据库(出版商)”最低求助积分说明 635591
版权声明 602927