A sequence-to-sequence model for joint bridge response forecasting

卡车 桥(图论) 结构健康监测 深度学习 计算机科学 工程类 人工神经网络 杠杆(统计) 时间序列 人工智能 机器学习 结构工程 汽车工程 医学 内科学
作者
Omid Bahrami,Wentao Wang,Rui Hou,Jerome P. Lynch
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:203: 110690-110690 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110690
摘要

Knowledge of the structural response of bridges is extremely important for highway asset management and bridge structural health monitoring. Instrumenting every bridge in a road network and maintaining the monitoring instrumentation over decades of service can be financially infeasible. Mechanical intuition suggests a significant relationship exists between responses of two sets of bridges reasonably similar in design exposed to an identical load. This study explores the use of data-driven models to forecast the response of one bridge to a given truck load using the response of another bridge to the same loading profile. By deploying a modern monitoring system in multiple bridges in the same highway corridor integrated in a cyber-physical systems (CPS) framework, and utilizing advanced computer vision algorithms, the authors have gathered a unique dataset consisting of pairs of bridge responses to the same truck load from live traffic moving across a 32.2 km (20 miles) stretch of the I-275 highway in southeast Michigan. Signal processing techniques have been employed to isolate the response of the bridges to a single truck load in a time series of recorded responses. Then, a deep-learning-based time series forecasting framework using the encoder-decoder architecture with gated recurrent unit (GRU) and long short-term memory (LSTM) cells has been used for bridge response forecasting. Baseline models based on linear time series models are also developed to which the deep-learning forecasting models can be compared. After training the models, it is observed that deep-learning-based models can accurately forecast the response of one bridge using the response of another and reduce the forecasting root-mean-squared error (RMSE) by at least 20% relative to baseline linear models. The forecasting capabilities of the encoder-decoder architecture proposed herein outperform traditional approaches to response forecasting. Trained versions of the encoder-decoder forecasting model can be used to provide reliable estimates of bridge response using a single instrumented bridge in a corridor, thereby enhancing the value of data from instrumented bridges for asset management of bridge networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mochalv123完成签到 ,获得积分10
1秒前
坚强涵山发布了新的文献求助100
2秒前
3秒前
追寻的铃铛关注了科研通微信公众号
4秒前
7秒前
思源应助飞云采纳,获得10
9秒前
在水一方应助123采纳,获得10
11秒前
12秒前
吴路发布了新的文献求助10
12秒前
善学以致用应助老阳采纳,获得10
13秒前
14秒前
14秒前
风中问晴完成签到,获得积分10
16秒前
18秒前
淡淡兔子完成签到 ,获得积分10
20秒前
谭久久完成签到,获得积分20
21秒前
于归发布了新的文献求助10
21秒前
老阳发布了新的文献求助10
24秒前
鲜艳的怜烟完成签到,获得积分10
26秒前
领导范儿应助吴路采纳,获得10
26秒前
Cactus应助Guoys采纳,获得10
28秒前
斯文败类应助NXK采纳,获得10
28秒前
852应助nicemice采纳,获得10
28秒前
科研通AI5应助踏雪飞鸿采纳,获得10
30秒前
大喵完成签到,获得积分10
31秒前
小李老博应助于归采纳,获得10
32秒前
夏夜之风完成签到 ,获得积分10
34秒前
贪玩薯片完成签到,获得积分10
35秒前
FashionBoy应助魏晓林采纳,获得10
35秒前
36秒前
36秒前
tetrakis完成签到,获得积分10
37秒前
39秒前
39秒前
NXK发布了新的文献求助10
40秒前
沐沐心完成签到 ,获得积分10
40秒前
冷傲的帽子完成签到 ,获得积分10
41秒前
41秒前
星辰大海应助老阳采纳,获得10
42秒前
Orange应助123采纳,获得10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738671
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027439
捐赠科研通 2998763
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782819
科研通“疑难数据库(出版商)”最低求助积分说明 749975