Multimodal Adaptive Emotion Transformer with Flexible Modality Inputs on A Novel Dataset with Continuous Labels

厌恶 计算机科学 惊喜 情绪分类 脑电图 人工智能 愤怒 唤醒 语音识别 认知心理学 心理学 沟通 精神科 神经科学
作者
Wei-Bang Jiang,Xuan-Hao Liu,Wei‐Long Zheng,Bao‐Liang Lu
标识
DOI:10.1145/3581783.3613797
摘要

Emotion recognition from physiological signals is a topic of widespread interest, and researchers continue to develop novel techniques for perceiving emotions. However, the emergence of deep learning has highlighted the need for high-quality emotional datasets to accurately decode human emotions. In this study, we present a novel multimodal emotion dataset that incorporates electroencephalography (EEG) and eye movement signals to systematically explore human emotions. Seven basic emotions (happy, sad, fear, disgust, surprise, anger, and neutral) are elicited by a large number of 80 videos and fully investigated with continuous labels that indicate the intensity of the corresponding emotions. Additionally, we propose a novel Multimodal Adaptive Emotion Transformer (MAET), that can flexibly process both unimodal and multimodal inputs. Adversarial training is utilized in MAET to mitigate subject discrepancy, which enhances domain generalization. Our extensive experiments, encompassing both subject-dependent and cross-subject conditions, demonstrate MAET's superior performance in handling various inputs. The filtering of data for high emotional evocation using continuous labels proved to be effective in the experiments. Furthermore, the complementary properties between EEG and eye movements are observed. Our code is available at https://github.com/935963004/MAET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子涵高完成签到,获得积分20
刚刚
刚刚
LINHY应助研友_8R5zBZ采纳,获得20
刚刚
1秒前
lijiao发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
小二郎应助hyominhsu采纳,获得10
2秒前
wanci应助无问采纳,获得10
2秒前
CKK应助maybe豪采纳,获得10
2秒前
yxy840325发布了新的文献求助10
2秒前
Jackson完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
Lgaga完成签到,获得积分10
4秒前
暗夜浮尘发布了新的文献求助10
4秒前
rooner发布了新的文献求助10
4秒前
橘子小狗完成签到,获得积分10
5秒前
善学以致用应助yzz采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
田様应助leo采纳,获得10
5秒前
5秒前
睡觉的猫发布了新的文献求助10
5秒前
BowieHuang应助半胖采纳,获得10
5秒前
jackY1256发布了新的文献求助10
5秒前
周国煌发布了新的文献求助10
5秒前
6秒前
6秒前
千屿完成签到,获得积分10
6秒前
精明觅荷完成签到,获得积分10
7秒前
ZHU完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Alex发布了新的文献求助10
8秒前
白白发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791