Multimodal Adaptive Emotion Transformer with Flexible Modality Inputs on A Novel Dataset with Continuous Labels

厌恶 计算机科学 惊喜 情绪分类 脑电图 人工智能 愤怒 唤醒 语音识别 认知心理学 心理学 沟通 精神科 神经科学
作者
Wei-Bang Jiang,Xuan-Hao Liu,Wei‐Long Zheng,Bao‐Liang Lu
标识
DOI:10.1145/3581783.3613797
摘要

Emotion recognition from physiological signals is a topic of widespread interest, and researchers continue to develop novel techniques for perceiving emotions. However, the emergence of deep learning has highlighted the need for high-quality emotional datasets to accurately decode human emotions. In this study, we present a novel multimodal emotion dataset that incorporates electroencephalography (EEG) and eye movement signals to systematically explore human emotions. Seven basic emotions (happy, sad, fear, disgust, surprise, anger, and neutral) are elicited by a large number of 80 videos and fully investigated with continuous labels that indicate the intensity of the corresponding emotions. Additionally, we propose a novel Multimodal Adaptive Emotion Transformer (MAET), that can flexibly process both unimodal and multimodal inputs. Adversarial training is utilized in MAET to mitigate subject discrepancy, which enhances domain generalization. Our extensive experiments, encompassing both subject-dependent and cross-subject conditions, demonstrate MAET's superior performance in handling various inputs. The filtering of data for high emotional evocation using continuous labels proved to be effective in the experiments. Furthermore, the complementary properties between EEG and eye movements are observed. Our code is available at https://github.com/935963004/MAET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
罗QQ完成签到 ,获得积分10
刚刚
852应助科研通管家采纳,获得10
刚刚
ccm应助科研通管家采纳,获得50
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
star应助科研通管家采纳,获得150
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
没烦恼完成签到,获得积分10
1秒前
无花果应助科研通管家采纳,获得10
2秒前
summer完成签到 ,获得积分10
3秒前
4秒前
5秒前
ding应助LYDZ2采纳,获得10
5秒前
柯语雪完成签到 ,获得积分10
6秒前
6秒前
罗QQ发布了新的文献求助20
8秒前
VESong发布了新的文献求助10
9秒前
9秒前
llll发布了新的文献求助10
10秒前
谨慎的妖丽完成签到,获得积分20
11秒前
Zuguo发布了新的文献求助10
11秒前
大胆的雪一完成签到,获得积分10
11秒前
123完成签到,获得积分10
12秒前
Hany完成签到,获得积分10
14秒前
15秒前
15秒前
共享精神应助梁晓雪采纳,获得10
16秒前
xintai完成签到,获得积分10
16秒前
嘿嘿哈完成签到,获得积分10
16秒前
科研通AI6应助王新颖采纳,获得10
19秒前
19秒前
嘿嘿哈发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288713
求助须知:如何正确求助?哪些是违规求助? 4440504
关于积分的说明 13824786
捐赠科研通 4322792
什么是DOI,文献DOI怎么找? 2372749
邀请新用户注册赠送积分活动 1368214
关于科研通互助平台的介绍 1332093