Nanoarchitectonics composite hydrogels with high toughness, mechanical strength, and self-healing capability for electrical actuators with programmable shape memory properties

自愈 材料科学 自愈水凝胶 执行机构 复合数 形状记忆合金 韧性 复合材料 透明度(行为) 计算机科学 高分子化学 计算机安全 医学 病理 人工智能 替代医学
作者
Yanqing Wang,Pengcheng Li,Shuting Cao,Yuetao Liu,Chuanhui Gao
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:15 (46): 18667-18677 被引量:4
标识
DOI:10.1039/d3nr03578f
摘要

Hydrogel materials show promise in various fields, including flexible electronic devices, biological tissue engineering and wound dressing. Nevertheless, the inadequate mechanical properties, recovery performance, and self-healing speed still constrain the development of intelligent hydrogel materials. To tackle these challenges, we designed a composite hydrogel with high mechanical strength, rapid self-recovery and efficient self-healing ability based on multiple synergistic effects. With the synergistic effect of hydrogen bonds, metal coordination bonds and electrostatic interaction, the synthesized hydrogel could reach a maximum tensile strength of 6.2 MPa and a toughness of 50 MJ m-3. The interaction between the weak polyelectrolyte polyethyleneimine and polyacrylic acid aided in improving the elasticity of the hydrogel, thereby endowing it with prompt self-recovery attributes. The multiple reversible effects also endowed the hydrogel with excellent self-healing ability, and the fractured hydrogel could achieve 95% self-healing within 4 h at room temperature. By the addition of glycerol, the hydrogel could also cope with a variety of extreme environments in terms of moisture retention (12 h, maintaining 80% of its water content) and freeze protection (-36.8 °C) properties. In addition, the composite hydrogels applied in the field of shape memory possessed programmable and reversible shape transformation properties. The polymer chains were entangled at high temperatures to achieve shape fixation, and shape memory was eliminated at low temperatures, which allowed the hydrogels to be reprogrammed and achieve multiple shape transitions. In addition, we also assemble composite hydrogels as actuators and robotic arms for intelligent applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宏hong完成签到,获得积分10
刚刚
刚刚
辛勤的媚颜完成签到 ,获得积分10
刚刚
gtm应助果敢采纳,获得30
1秒前
1秒前
1秒前
美好乐松应助shouyu29采纳,获得10
2秒前
2秒前
大地完成签到,获得积分10
2秒前
严易云发布了新的文献求助10
3秒前
3秒前
3秒前
6秒前
6秒前
6秒前
嚭嚭发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
追梦小帅发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
司徒骁发布了新的文献求助10
8秒前
Yvette2024发布了新的文献求助10
8秒前
9秒前
lyl19880908应助MIN采纳,获得10
9秒前
10秒前
是漏漏呀完成签到 ,获得积分10
10秒前
我来也完成签到 ,获得积分10
10秒前
tangpc发布了新的文献求助10
11秒前
严易云完成签到,获得积分10
11秒前
12秒前
kk发布了新的文献求助10
13秒前
lorryliu发布了新的文献求助10
13秒前
小蘑菇应助llllhh采纳,获得10
14秒前
Yvette2024完成签到,获得积分10
14秒前
RockRedfoo完成签到 ,获得积分10
15秒前
许自通发布了新的文献求助10
15秒前
啊啊完成签到,获得积分10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771