Topological Network Field Preservation for Heterogeneous Graph Embedding

计算机科学 中心性 拓扑(电路) 图嵌入 拓扑图论 嵌入 理论计算机科学 图形 人工智能 数学 电压图 折线图 组合数学
作者
Jiale Xu,Ouxia Du,Siyu Liu,Ya Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 466-480
标识
DOI:10.1007/978-981-99-7254-8_36
摘要

Heterogeneous graph (HG) embedding, aiming to represent the nodes in the graph as a low-dimensional vector form for further reasoning to better implement downstream tasks, has attracted considerable attention in recent years. Most existing HG embedding methods use the meta-paths to preserve the proximity or adapt graph neural networks (GNNs) to facilitate the message-passing process. However, these methods neglect to analyze the shape properties of nodes and the influence of each node from a topological perspective, thus cannot fully explore the information on higher-order connectivity of HG and be effectively support more complex tasks of network analysis. In this paper, a novel HG embedding model (TNFE) is proposed to capture the topological link structure and the higher-order interactive information between nodes simultaneously. Specifically, persistent homology is used to reconstruct the connection between nodes in HG. Then the neighborhoods of the nodes are aggregated based on a graph convolutional network. Moreover, modular topology centrality is defined to sample the topological network field structure of each node. Finally, multi-task learning task is built to preserve the topology connectivity and the topological network field proximity simultaneously. The extensive experiments on three real-world datasets show that our method outperforms the state-of-the-art approaches on node classification and clustering task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰雪顶发布了新的文献求助10
刚刚
1秒前
2秒前
Ava应助细腻的铁身采纳,获得10
2秒前
sugar发布了新的文献求助10
2秒前
哗哗哗发布了新的文献求助10
2秒前
思源应助ctttt采纳,获得10
3秒前
潇洒的灵萱完成签到,获得积分10
3秒前
3秒前
科研通AI6应助虚幻雨筠采纳,获得10
3秒前
珍珠奶茶发布了新的文献求助10
4秒前
4秒前
ywwq完成签到,获得积分20
4秒前
4秒前
nkdailingyun完成签到,获得积分10
5秒前
15完成签到,获得积分10
5秒前
6秒前
健忘的荔枝完成签到,获得积分10
6秒前
Kyrene发布了新的文献求助10
6秒前
小马甲应助xieji采纳,获得10
8秒前
liuyunhao7207完成签到,获得积分10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
浮游应助坚定的路人采纳,获得10
10秒前
12秒前
lzy应助Tmac采纳,获得10
12秒前
科研通AI6应助Tmac采纳,获得10
12秒前
隐形曼青应助Tmac采纳,获得10
12秒前
13秒前
bkagyin应助火星上的飞槐采纳,获得10
13秒前
珍珠奶茶完成签到,获得积分10
13秒前
李健应助哈机密南北撸多采纳,获得10
13秒前
隐形曼青应助阿白采纳,获得10
13秒前
14秒前
14秒前
哒丝萌德完成签到,获得积分10
14秒前
14秒前
14秒前
敏感小霸王完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389