Topological Network Field Preservation for Heterogeneous Graph Embedding

计算机科学 中心性 拓扑(电路) 图嵌入 拓扑图论 嵌入 理论计算机科学 图形 人工智能 数学 电压图 折线图 组合数学
作者
Jiale Xu,Ouxia Du,Siyu Liu,Ya Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 466-480
标识
DOI:10.1007/978-981-99-7254-8_36
摘要

Heterogeneous graph (HG) embedding, aiming to represent the nodes in the graph as a low-dimensional vector form for further reasoning to better implement downstream tasks, has attracted considerable attention in recent years. Most existing HG embedding methods use the meta-paths to preserve the proximity or adapt graph neural networks (GNNs) to facilitate the message-passing process. However, these methods neglect to analyze the shape properties of nodes and the influence of each node from a topological perspective, thus cannot fully explore the information on higher-order connectivity of HG and be effectively support more complex tasks of network analysis. In this paper, a novel HG embedding model (TNFE) is proposed to capture the topological link structure and the higher-order interactive information between nodes simultaneously. Specifically, persistent homology is used to reconstruct the connection between nodes in HG. Then the neighborhoods of the nodes are aggregated based on a graph convolutional network. Moreover, modular topology centrality is defined to sample the topological network field structure of each node. Finally, multi-task learning task is built to preserve the topology connectivity and the topological network field proximity simultaneously. The extensive experiments on three real-world datasets show that our method outperforms the state-of-the-art approaches on node classification and clustering task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪文发布了新的文献求助10
1秒前
风中的雪发布了新的文献求助10
1秒前
1秒前
hzs发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Mengqi完成签到,获得积分10
3秒前
4秒前
4秒前
李爱国应助彩色黑米采纳,获得10
4秒前
Akim应助你好呀采纳,获得10
4秒前
Jasper应助你好呀采纳,获得10
5秒前
充电宝应助你好呀采纳,获得10
5秒前
丘比特应助你好呀采纳,获得10
5秒前
上官若男应助你好呀采纳,获得10
5秒前
Ava应助你好呀采纳,获得10
5秒前
张子陌完成签到 ,获得积分10
5秒前
ding应助你好呀采纳,获得10
5秒前
科研通AI6应助你好呀采纳,获得10
5秒前
小蘑菇应助你好呀采纳,获得10
5秒前
情怀应助你好呀采纳,获得10
5秒前
Owen应助蛋筒采纳,获得10
6秒前
小怪发布了新的文献求助10
6秒前
不想睡觉发布了新的文献求助10
7秒前
今后应助无聊的夜山采纳,获得10
7秒前
活力萤完成签到,获得积分10
7秒前
pjy发布了新的文献求助10
7秒前
makimaki应助小沈采纳,获得10
8秒前
8秒前
baobao完成签到,获得积分10
9秒前
补丁发布了新的文献求助10
10秒前
10秒前
11秒前
专注的问寒应助洪文采纳,获得20
12秒前
13秒前
小王爱摆烂完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
mj完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632882
求助须知:如何正确求助?哪些是违规求助? 4728147
关于积分的说明 14984358
捐赠科研通 4790889
什么是DOI,文献DOI怎么找? 2558632
邀请新用户注册赠送积分活动 1519067
关于科研通互助平台的介绍 1479370