Topological Network Field Preservation for Heterogeneous Graph Embedding

计算机科学 中心性 拓扑(电路) 图嵌入 拓扑图论 嵌入 理论计算机科学 图形 人工智能 数学 电压图 折线图 组合数学
作者
Jiale Xu,Ouxia Du,Siyu Liu,Ya Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 466-480
标识
DOI:10.1007/978-981-99-7254-8_36
摘要

Heterogeneous graph (HG) embedding, aiming to represent the nodes in the graph as a low-dimensional vector form for further reasoning to better implement downstream tasks, has attracted considerable attention in recent years. Most existing HG embedding methods use the meta-paths to preserve the proximity or adapt graph neural networks (GNNs) to facilitate the message-passing process. However, these methods neglect to analyze the shape properties of nodes and the influence of each node from a topological perspective, thus cannot fully explore the information on higher-order connectivity of HG and be effectively support more complex tasks of network analysis. In this paper, a novel HG embedding model (TNFE) is proposed to capture the topological link structure and the higher-order interactive information between nodes simultaneously. Specifically, persistent homology is used to reconstruct the connection between nodes in HG. Then the neighborhoods of the nodes are aggregated based on a graph convolutional network. Moreover, modular topology centrality is defined to sample the topological network field structure of each node. Finally, multi-task learning task is built to preserve the topology connectivity and the topological network field proximity simultaneously. The extensive experiments on three real-world datasets show that our method outperforms the state-of-the-art approaches on node classification and clustering task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助半_采纳,获得10
2秒前
3秒前
3秒前
向阳发布了新的文献求助10
3秒前
3秒前
nanshou发布了新的文献求助10
4秒前
小龚小龚发布了新的文献求助10
4秒前
4秒前
简单的藏红花完成签到,获得积分10
4秒前
panyubo完成签到,获得积分20
5秒前
TANG发布了新的文献求助10
6秒前
可靠F发布了新的文献求助10
7秒前
小鱼完成签到,获得积分10
8秒前
天真依玉完成签到,获得积分10
8秒前
yjh发布了新的文献求助10
8秒前
9秒前
熊猫之歌完成签到,获得积分10
9秒前
9秒前
9秒前
现代蛋挞完成签到,获得积分10
10秒前
等待兔子完成签到,获得积分20
10秒前
12秒前
13秒前
14秒前
14秒前
15秒前
16秒前
田字格发布了新的文献求助10
16秒前
16秒前
luke发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
pgg147852发布了新的文献求助30
17秒前
深情海秋完成签到,获得积分10
18秒前
19秒前
20秒前
caiia完成签到,获得积分10
20秒前
YoKo完成签到,获得积分10
21秒前
霜降应助静静采纳,获得60
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646