Topological Network Field Preservation for Heterogeneous Graph Embedding

计算机科学 中心性 拓扑(电路) 图嵌入 拓扑图论 嵌入 理论计算机科学 图形 人工智能 数学 电压图 折线图 组合数学
作者
Jiale Xu,Ouxia Du,Siyu Liu,Ya Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 466-480
标识
DOI:10.1007/978-981-99-7254-8_36
摘要

Heterogeneous graph (HG) embedding, aiming to represent the nodes in the graph as a low-dimensional vector form for further reasoning to better implement downstream tasks, has attracted considerable attention in recent years. Most existing HG embedding methods use the meta-paths to preserve the proximity or adapt graph neural networks (GNNs) to facilitate the message-passing process. However, these methods neglect to analyze the shape properties of nodes and the influence of each node from a topological perspective, thus cannot fully explore the information on higher-order connectivity of HG and be effectively support more complex tasks of network analysis. In this paper, a novel HG embedding model (TNFE) is proposed to capture the topological link structure and the higher-order interactive information between nodes simultaneously. Specifically, persistent homology is used to reconstruct the connection between nodes in HG. Then the neighborhoods of the nodes are aggregated based on a graph convolutional network. Moreover, modular topology centrality is defined to sample the topological network field structure of each node. Finally, multi-task learning task is built to preserve the topology connectivity and the topological network field proximity simultaneously. The extensive experiments on three real-world datasets show that our method outperforms the state-of-the-art approaches on node classification and clustering task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smottom应助LYL采纳,获得10
刚刚
天天快乐应助cryjslong采纳,获得10
1秒前
1秒前
沉默的基因完成签到,获得积分10
1秒前
豌豆射手发布了新的文献求助10
1秒前
zhoufz发布了新的文献求助10
2秒前
科研通AI6.1应助summing采纳,获得10
2秒前
2秒前
桢桢树发布了新的文献求助10
3秒前
Xilli完成签到 ,获得积分10
3秒前
科研通AI6.1应助三虎科研采纳,获得10
3秒前
4秒前
Weathing完成签到 ,获得积分10
4秒前
4秒前
圆锥香蕉发布了新的文献求助30
5秒前
5秒前
5秒前
liandli123完成签到 ,获得积分10
6秒前
xiaoyuzi发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
7秒前
高高的书本完成签到 ,获得积分10
7秒前
7秒前
8秒前
脑洞疼应助xiao采纳,获得10
8秒前
Dylan发布了新的文献求助10
8秒前
8秒前
old赵应助小虎采纳,获得10
10秒前
wsysweet发布了新的文献求助10
10秒前
Hello应助heyheybaby采纳,获得10
10秒前
11秒前
hyw发布了新的文献求助80
12秒前
tzr应助怕孤独的苑博采纳,获得10
14秒前
qvb完成签到 ,获得积分10
14秒前
14秒前
可靠的芒果完成签到,获得积分10
15秒前
柔弱雅彤发布了新的文献求助10
15秒前
可爱的函函应助初一采纳,获得10
16秒前
16秒前
17秒前
个性的紫菜应助JIAN采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106