Topological Network Field Preservation for Heterogeneous Graph Embedding

计算机科学 中心性 拓扑(电路) 图嵌入 拓扑图论 嵌入 理论计算机科学 图形 人工智能 数学 电压图 折线图 组合数学
作者
Jiale Xu,Ouxia Du,Siyu Liu,Ya Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 466-480
标识
DOI:10.1007/978-981-99-7254-8_36
摘要

Heterogeneous graph (HG) embedding, aiming to represent the nodes in the graph as a low-dimensional vector form for further reasoning to better implement downstream tasks, has attracted considerable attention in recent years. Most existing HG embedding methods use the meta-paths to preserve the proximity or adapt graph neural networks (GNNs) to facilitate the message-passing process. However, these methods neglect to analyze the shape properties of nodes and the influence of each node from a topological perspective, thus cannot fully explore the information on higher-order connectivity of HG and be effectively support more complex tasks of network analysis. In this paper, a novel HG embedding model (TNFE) is proposed to capture the topological link structure and the higher-order interactive information between nodes simultaneously. Specifically, persistent homology is used to reconstruct the connection between nodes in HG. Then the neighborhoods of the nodes are aggregated based on a graph convolutional network. Moreover, modular topology centrality is defined to sample the topological network field structure of each node. Finally, multi-task learning task is built to preserve the topology connectivity and the topological network field proximity simultaneously. The extensive experiments on three real-world datasets show that our method outperforms the state-of-the-art approaches on node classification and clustering task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的惜芹完成签到,获得积分10
1秒前
英俊以菱完成签到,获得积分10
1秒前
3秒前
Ava应助江南刀王采纳,获得10
3秒前
5秒前
niuya完成签到,获得积分10
5秒前
科研通AI5应助messi采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
qi发布了新的文献求助50
8秒前
慕笙完成签到,获得积分10
9秒前
天天快乐应助Mikey_Teng采纳,获得10
10秒前
桐桐应助许树生采纳,获得10
10秒前
要苦就苦别人完成签到,获得积分10
12秒前
13秒前
15秒前
hu完成签到,获得积分10
15秒前
16秒前
16秒前
科目三应助好哥哥采纳,获得10
16秒前
17秒前
18秒前
18秒前
18秒前
iNk应助GD88采纳,获得20
18秒前
华仔应助倪妮采纳,获得30
19秒前
科研通AI5应助倪妮采纳,获得10
19秒前
小杭76应助倪妮采纳,获得10
19秒前
浮游应助倪妮采纳,获得10
19秒前
19秒前
量子星尘发布了新的文献求助50
20秒前
手打鱼丸完成签到 ,获得积分10
20秒前
20秒前
LAH1018发布了新的文献求助10
21秒前
clay发布了新的文献求助10
21秒前
22秒前
王航发布了新的文献求助10
22秒前
22秒前
Mikey_Teng发布了新的文献求助10
23秒前
搞怪汉堡发布了新的文献求助10
24秒前
淡定的勒发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5101843
求助须知:如何正确求助?哪些是违规求助? 4313159
关于积分的说明 13439044
捐赠科研通 4140866
什么是DOI,文献DOI怎么找? 2268946
邀请新用户注册赠送积分活动 1271669
关于科研通互助平台的介绍 1208056