Topological Network Field Preservation for Heterogeneous Graph Embedding

计算机科学 中心性 拓扑(电路) 图嵌入 拓扑图论 嵌入 理论计算机科学 图形 人工智能 数学 电压图 折线图 组合数学
作者
Jiale Xu,Ouxia Du,Siyu Liu,Ya Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 466-480
标识
DOI:10.1007/978-981-99-7254-8_36
摘要

Heterogeneous graph (HG) embedding, aiming to represent the nodes in the graph as a low-dimensional vector form for further reasoning to better implement downstream tasks, has attracted considerable attention in recent years. Most existing HG embedding methods use the meta-paths to preserve the proximity or adapt graph neural networks (GNNs) to facilitate the message-passing process. However, these methods neglect to analyze the shape properties of nodes and the influence of each node from a topological perspective, thus cannot fully explore the information on higher-order connectivity of HG and be effectively support more complex tasks of network analysis. In this paper, a novel HG embedding model (TNFE) is proposed to capture the topological link structure and the higher-order interactive information between nodes simultaneously. Specifically, persistent homology is used to reconstruct the connection between nodes in HG. Then the neighborhoods of the nodes are aggregated based on a graph convolutional network. Moreover, modular topology centrality is defined to sample the topological network field structure of each node. Finally, multi-task learning task is built to preserve the topology connectivity and the topological network field proximity simultaneously. The extensive experiments on three real-world datasets show that our method outperforms the state-of-the-art approaches on node classification and clustering task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热铅笔发布了新的文献求助10
刚刚
刚刚
领导范儿应助ghjyufh采纳,获得10
刚刚
小刘完成签到,获得积分10
1秒前
如意的代芹完成签到,获得积分10
1秒前
1秒前
Du_u20230228发布了新的文献求助30
1秒前
无花果应助WWXWWX采纳,获得10
2秒前
张不张完成签到,获得积分10
2秒前
2秒前
陈阳完成签到,获得积分10
2秒前
烟花应助叶文言采纳,获得10
2秒前
guoyunlong发布了新的文献求助10
2秒前
2秒前
lixx发布了新的文献求助10
3秒前
AdeleValenta应助烫烫采纳,获得50
3秒前
棋士发布了新的文献求助10
3秒前
3秒前
忍耐的龟完成签到,获得积分10
3秒前
3秒前
无花果应助酷酷乐瑶采纳,获得10
4秒前
小茉莉完成签到 ,获得积分10
4秒前
彭于晏应助弥生采纳,获得10
4秒前
5秒前
Orange应助外向白昼采纳,获得10
5秒前
打工鼠鼠完成签到 ,获得积分10
5秒前
6秒前
李健的粉丝团团长应助YJ采纳,获得10
6秒前
JamesPei应助李Li采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
顾矜应助NeoWu采纳,获得10
7秒前
mustead发布了新的文献求助30
7秒前
wu发布了新的文献求助20
7秒前
领导范儿应助MING采纳,获得10
7秒前
Huli发布了新的文献求助10
8秒前
彭于晏应助XXX采纳,获得10
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692816
求助须知:如何正确求助?哪些是违规求助? 5090275
关于积分的说明 15209741
捐赠科研通 4849989
什么是DOI,文献DOI怎么找? 2601457
邀请新用户注册赠送积分活动 1553204
关于科研通互助平台的介绍 1511374