TCMCoRep: Traditional Chinese Medicine Data Mining with Contrastive Graph Representation Learning

计算机科学 药方 图形 特征学习 代表(政治) 人工智能 整体论 自然语言处理 医学诊断 机器学习 数据挖掘 理论计算机科学 医学 药理学 法学 病理 政治 生物 生态学 政治学
作者
Zecheng Yin,Jinyuan Luo,Tan Yang,Yanchun Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 44-55
标识
DOI:10.1007/978-3-031-40292-0_5
摘要

Traditional Chinese Medicine(TCM) is a highly empirical, subjective and practical discipline. One of the most realistic data mining tasks in TCM is prescription generation. While recommendation models could be applied to provide herb recommendation, they are limited to modeling only the interactions between herbs and symptoms, ignoring the intermediate process of syndrome induction, which betrays a main principle in real-world TCM diagnosis: doctors suggest herb based on the holism syndrome inducted from symptoms. Targeting on this pain point, we proposed TCMCoRep, a novel graph contrastive representation learning framework with explicit syndrome awareness. For a given symptom set, predictive representation from TCMCoRep not only locates high quality prescription herbs but also explicitly detects corresponding syndrome via syndrome-aware prescription generation that follows the philosophy of TCM diagnosis in real life. Hybridization of homogeneous and heterogeneous graph convolutions is able to preserve graph heterogeneity preventing the possible damage from early augmentation, to convey strong samples for contrastive learning. Experiments conducted in practical datasets demonstrate our proposed model’s competitive performance compared with existing state-of-the-art methods, revealing the great potential in real-world applications. Our source code is available at https://github.com/Yonggie/TCMCoRep .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑半仙完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
枫于林完成签到 ,获得积分10
8秒前
9秒前
lml完成签到,获得积分10
9秒前
Mia发布了新的文献求助30
11秒前
RhapsodyHua完成签到,获得积分10
12秒前
13秒前
简单白风完成签到 ,获得积分10
15秒前
老默发布了新的文献求助10
15秒前
orixero应助29采纳,获得10
17秒前
希望天下0贩的0应助yiyi采纳,获得10
19秒前
小蘑菇应助carly采纳,获得10
20秒前
20秒前
Rondab应助科研通管家采纳,获得10
22秒前
YiyueChan完成签到,获得积分10
22秒前
water应助科研通管家采纳,获得10
22秒前
water应助科研通管家采纳,获得10
22秒前
Rondab应助科研通管家采纳,获得10
22秒前
Liufgui应助DianaRang采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
湖医小朱完成签到,获得积分10
24秒前
qqqq完成签到,获得积分10
25秒前
Good_小鬼完成签到,获得积分10
29秒前
cocolu完成签到,获得积分0
34秒前
hhhhuo完成签到,获得积分10
35秒前
852应助今今采纳,获得10
35秒前
12wsesd完成签到 ,获得积分10
38秒前
38秒前
yydragen应助火星上小小采纳,获得30
38秒前
40秒前
rong完成签到,获得积分20
41秒前
yiyi发布了新的文献求助10
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167