Research related to the diagnosis of prostate cancer based on machine learning medical images: A review

前列腺癌 医学 前列腺 人工智能 医学物理学 癌症 医学影像学 放射科 计算机科学 内科学
作者
Xinyi Chen,Xiang Liu,Yuke Wu,Zhenglei Wang,Shuo Hong Wang
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:181: 105279-105279 被引量:1
标识
DOI:10.1016/j.ijmedinf.2023.105279
摘要

Prostate cancer is currently the second most prevalent cancer among men. Accurate diagnosis of prostate cancer can provide effective treatment for patients and greatly reduce mortality. The current medical imaging tools for screening prostate cancer are mainly MRI, CT and ultrasound. In the past 20 years, these medical imaging methods have made great progress with machine learning, especially the rise of deep learning has led to a wider application of artificial intelligence in the use of image-assisted diagnosis of prostate cancer. This review collected medical image processing methods, prostate and prostate cancer on MR images, CT images, and ultrasound images through search engines such as web of science, PubMed, and Google Scholar, including image pre-processing methods, segmentation of prostate gland on medical images, registration between prostate gland on different modal images, detection of prostate cancer lesions on the prostate. Through these collated papers, it is found that the current research on the diagnosis and staging of prostate cancer using machine learning and deep learning is in its infancy, and most of the existing studies are on the diagnosis of prostate cancer and classification of lesions, and the accuracy is low, with the best results having an accuracy of less than 0.95. There are fewer studies on staging. The research is mainly focused on MR images and much less on CT images, ultrasound images. Machine learning and deep learning combined with medical imaging have a broad application prospect for the diagnosis and staging of prostate cancer, but the research in this area still has more room for development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XY完成签到,获得积分10
刚刚
无私的馒头完成签到,获得积分10
刚刚
qqq完成签到,获得积分10
刚刚
曾经映寒完成签到 ,获得积分10
刚刚
优雅山柏发布了新的文献求助10
1秒前
wayne完成签到 ,获得积分10
1秒前
sc发布了新的文献求助10
1秒前
科研通AI5应助Asteria采纳,获得10
2秒前
含糊的书兰完成签到,获得积分10
2秒前
2秒前
3秒前
科研助手6应助水濑心源采纳,获得10
3秒前
思源应助凉笙墨染采纳,获得10
3秒前
qqq发布了新的文献求助10
3秒前
打打完成签到 ,获得积分10
3秒前
Holland应助Q清风慕竹采纳,获得10
4秒前
4秒前
汉堡包应助常乐的大宝剑采纳,获得10
4秒前
zzz发布了新的文献求助10
4秒前
100完成签到,获得积分10
5秒前
jjjh发布了新的文献求助10
5秒前
guanguan完成签到,获得积分10
5秒前
yy发布了新的文献求助10
5秒前
wanci应助jiajiajiamin采纳,获得10
6秒前
落花生发布了新的文献求助10
7秒前
7秒前
吃火锅不蘸料完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
陈丹丹完成签到,获得积分10
8秒前
无奈的飞珍关注了科研通微信公众号
9秒前
蜗牛的世界完成签到,获得积分10
9秒前
科研通AI5应助学术的裁缝采纳,获得10
9秒前
Asteria完成签到,获得积分10
10秒前
英勇的鹤完成签到,获得积分10
10秒前
10秒前
ableyy发布了新的文献求助10
11秒前
上官若男应助无限的向卉采纳,获得10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3771198
求助须知:如何正确求助?哪些是违规求助? 3316169
关于积分的说明 10180529
捐赠科研通 3031439
什么是DOI,文献DOI怎么找? 1663211
邀请新用户注册赠送积分活动 795466
科研通“疑难数据库(出版商)”最低求助积分说明 756828