Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation

计算机科学 差别隐私 范畴变量 人工神经网络 数据挖掘 计算 拉普拉斯分布 个人可识别信息 算法 人工智能 拉普拉斯变换 机器学习 计算机安全 数学 数学分析
作者
G. Sathish Kumar,K. Premalatha,G. Uma Maheshwari,P. Rajesh Kanna,G. Vijaya,M. Nivaashini
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107399-107399 被引量:32
标识
DOI:10.1016/j.engappai.2023.107399
摘要

Mountainous amounts of information are now available in hospitals, finance, counter-terrorism, education and many other sectors. Those information can offer a rich source for analysis and decision making. Such information contains user's sensitive and personal data as well. This emanates direct conflict with the user's privacy. Individual's privacy is their right. The existing privacy preserving algorithms works mainly on the numerical data and doesn't care about the categorical data. In addition, there is a heavy trade-off between privacy preservation and data utility. To overcome these issues, a deep neural network - statistical differential privacy (DNN−SDP) algorithm is proposed as the solution to disguise the individual's private and sensitive data. Both the numerical and categorical based human-specific data are considered and fed to the input layer of the neural network. The statistical methods weight of evidence and information value is applied in the hidden layer along with the random weight (wi) to get the initial perturbed data. This initially perturbed data is taken by Laplace computation based differential privacy mechanism as the input and provides the final perturbed data. Census income, bank marketing and heart disease datasets are used for experimentation. While comparing with the state-of-the-art methods, DNN−SDP algorithm provides 97.4% of accuracy with 98.2% of precision, 99% of recall rate and 98.7% of F-measure value. In addition, the fall-out rate, miss rate and false omission rate of the proposed algorithm are less than 4.1%. The DNN−SDP algorithm guarantees the privacy preservation along with data utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助WD采纳,获得10
2秒前
ting完成签到,获得积分10
2秒前
3秒前
4秒前
wdlc发布了新的文献求助20
5秒前
小张医生完成签到,获得积分10
5秒前
7秒前
8秒前
小鲤鱼完成签到,获得积分10
10秒前
FashionBoy应助copycat采纳,获得10
11秒前
呵呵发布了新的文献求助10
11秒前
少堂发布了新的文献求助10
12秒前
14秒前
Ava应助阔达栾采纳,获得10
14秒前
三三磊完成签到,获得积分10
14秒前
大个应助HopeStar采纳,获得10
16秒前
17秒前
泼尼松说我很甜完成签到,获得积分10
17秒前
17秒前
安详的笑旋完成签到 ,获得积分10
21秒前
25秒前
在水一方应助zychaos采纳,获得30
26秒前
28秒前
zxl完成签到,获得积分10
29秒前
所所应助xxxhhh采纳,获得10
29秒前
乌衣巷沉默的豆豉完成签到,获得积分10
31秒前
歇菜发布了新的文献求助10
31秒前
完美世界应助lulu1234采纳,获得10
31秒前
33秒前
斯文败类应助狂野的微笑采纳,获得10
34秒前
HopeStar发布了新的文献求助10
34秒前
34秒前
SYLH应助科研通管家采纳,获得30
35秒前
深情安青应助科研通管家采纳,获得10
35秒前
脑洞疼应助科研通管家采纳,获得10
35秒前
wu8577应助科研通管家采纳,获得10
35秒前
CodeCraft应助科研通管家采纳,获得10
35秒前
35秒前
上官若男应助科研通管家采纳,获得10
35秒前
wu8577应助科研通管家采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417