Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation

计算机科学 差别隐私 范畴变量 人工神经网络 数据挖掘 计算 拉普拉斯分布 个人可识别信息 算法 人工智能 拉普拉斯变换 机器学习 计算机安全 数学 数学分析
作者
G. Sathish Kumar,K. Premalatha,G. Uma Maheshwari,P. Rajesh Kanna,G. Vijaya,M. Nivaashini
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107399-107399 被引量:32
标识
DOI:10.1016/j.engappai.2023.107399
摘要

Mountainous amounts of information are now available in hospitals, finance, counter-terrorism, education and many other sectors. Those information can offer a rich source for analysis and decision making. Such information contains user's sensitive and personal data as well. This emanates direct conflict with the user's privacy. Individual's privacy is their right. The existing privacy preserving algorithms works mainly on the numerical data and doesn't care about the categorical data. In addition, there is a heavy trade-off between privacy preservation and data utility. To overcome these issues, a deep neural network - statistical differential privacy (DNN−SDP) algorithm is proposed as the solution to disguise the individual's private and sensitive data. Both the numerical and categorical based human-specific data are considered and fed to the input layer of the neural network. The statistical methods weight of evidence and information value is applied in the hidden layer along with the random weight (wi) to get the initial perturbed data. This initially perturbed data is taken by Laplace computation based differential privacy mechanism as the input and provides the final perturbed data. Census income, bank marketing and heart disease datasets are used for experimentation. While comparing with the state-of-the-art methods, DNN−SDP algorithm provides 97.4% of accuracy with 98.2% of precision, 99% of recall rate and 98.7% of F-measure value. In addition, the fall-out rate, miss rate and false omission rate of the proposed algorithm are less than 4.1%. The DNN−SDP algorithm guarantees the privacy preservation along with data utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干了这杯82年可乐完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
斯文败类应助就这采纳,获得10
2秒前
桐桐应助刘宏采纳,获得10
3秒前
3秒前
科研通AI6应助murraya采纳,获得10
4秒前
4秒前
5秒前
5秒前
wanci应助加百莉采纳,获得10
5秒前
笨笨小鸭子完成签到,获得积分10
5秒前
kin完成签到,获得积分10
5秒前
小伊001完成签到,获得积分10
5秒前
6秒前
Sally关注了科研通微信公众号
6秒前
ljw发布了新的文献求助10
6秒前
7秒前
文二目分完成签到 ,获得积分10
8秒前
xuxu发布了新的文献求助10
8秒前
8秒前
Lian发布了新的文献求助10
8秒前
机灵的波比应助leo_twli采纳,获得10
9秒前
杨榆藤发布了新的文献求助10
9秒前
9秒前
zhantianao发布了新的文献求助10
10秒前
lhn完成签到,获得积分10
10秒前
10秒前
utopia发布了新的文献求助10
10秒前
浮游应助大气诺言采纳,获得10
11秒前
11秒前
11秒前
白衣轻叹发布了新的文献求助10
11秒前
姽婳wy发布了新的文献求助10
11秒前
12秒前
Aries完成签到,获得积分10
12秒前
谦让夏云完成签到,获得积分10
12秒前
闪闪的炳发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355169
求助须知:如何正确求助?哪些是违规求助? 4487134
关于积分的说明 13969038
捐赠科研通 4387809
什么是DOI,文献DOI怎么找? 2410606
邀请新用户注册赠送积分活动 1403044
关于科研通互助平台的介绍 1376758