Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation

计算机科学 差别隐私 范畴变量 人工神经网络 数据挖掘 计算 拉普拉斯分布 个人可识别信息 算法 人工智能 拉普拉斯变换 机器学习 计算机安全 数学 数学分析
作者
G. Sathish Kumar,K. Premalatha,G. Uma Maheshwari,P. Rajesh Kanna,G. Vijaya,M. Nivaashini
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107399-107399 被引量:32
标识
DOI:10.1016/j.engappai.2023.107399
摘要

Mountainous amounts of information are now available in hospitals, finance, counter-terrorism, education and many other sectors. Those information can offer a rich source for analysis and decision making. Such information contains user's sensitive and personal data as well. This emanates direct conflict with the user's privacy. Individual's privacy is their right. The existing privacy preserving algorithms works mainly on the numerical data and doesn't care about the categorical data. In addition, there is a heavy trade-off between privacy preservation and data utility. To overcome these issues, a deep neural network - statistical differential privacy (DNN−SDP) algorithm is proposed as the solution to disguise the individual's private and sensitive data. Both the numerical and categorical based human-specific data are considered and fed to the input layer of the neural network. The statistical methods weight of evidence and information value is applied in the hidden layer along with the random weight (wi) to get the initial perturbed data. This initially perturbed data is taken by Laplace computation based differential privacy mechanism as the input and provides the final perturbed data. Census income, bank marketing and heart disease datasets are used for experimentation. While comparing with the state-of-the-art methods, DNN−SDP algorithm provides 97.4% of accuracy with 98.2% of precision, 99% of recall rate and 98.7% of F-measure value. In addition, the fall-out rate, miss rate and false omission rate of the proposed algorithm are less than 4.1%. The DNN−SDP algorithm guarantees the privacy preservation along with data utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狮子座发布了新的文献求助10
1秒前
1秒前
洁净艳一发布了新的文献求助10
3秒前
falling_learning完成签到 ,获得积分10
4秒前
4秒前
6秒前
大布发布了新的文献求助10
6秒前
人123456发布了新的文献求助10
6秒前
6秒前
小二郎应助洁净艳一采纳,获得10
7秒前
所所应助狮子座采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
夕荀发布了新的文献求助10
11秒前
wuyisha完成签到,获得积分10
11秒前
lhwysxx完成签到,获得积分10
11秒前
废寝忘食发布了新的文献求助10
12秒前
13秒前
苏苏弋完成签到 ,获得积分10
13秒前
13秒前
远看寒山发布了新的文献求助10
13秒前
雨天发布了新的文献求助10
13秒前
搜索文献的一天完成签到,获得积分10
14秒前
14秒前
狮子座完成签到,获得积分20
14秒前
15秒前
15秒前
发疯的游子完成签到 ,获得积分10
16秒前
慕青应助颠覆乾坤采纳,获得10
16秒前
Micheallee完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
19秒前
chixueqi发布了新的文献求助10
19秒前
19秒前
一自文又欠完成签到 ,获得积分10
20秒前
夕荀完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425362
求助须知:如何正确求助?哪些是违规求助? 4539459
关于积分的说明 14168091
捐赠科研通 4456964
什么是DOI,文献DOI怎么找? 2444356
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740