Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation

计算机科学 差别隐私 范畴变量 人工神经网络 数据挖掘 计算 拉普拉斯分布 个人可识别信息 算法 人工智能 拉普拉斯变换 机器学习 计算机安全 数学 数学分析
作者
G. Sathish Kumar,K. Premalatha,G. Uma Maheshwari,P. Rajesh Kanna,G. Vijaya,M. Nivaashini
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107399-107399 被引量:32
标识
DOI:10.1016/j.engappai.2023.107399
摘要

Mountainous amounts of information are now available in hospitals, finance, counter-terrorism, education and many other sectors. Those information can offer a rich source for analysis and decision making. Such information contains user's sensitive and personal data as well. This emanates direct conflict with the user's privacy. Individual's privacy is their right. The existing privacy preserving algorithms works mainly on the numerical data and doesn't care about the categorical data. In addition, there is a heavy trade-off between privacy preservation and data utility. To overcome these issues, a deep neural network - statistical differential privacy (DNN−SDP) algorithm is proposed as the solution to disguise the individual's private and sensitive data. Both the numerical and categorical based human-specific data are considered and fed to the input layer of the neural network. The statistical methods weight of evidence and information value is applied in the hidden layer along with the random weight (wi) to get the initial perturbed data. This initially perturbed data is taken by Laplace computation based differential privacy mechanism as the input and provides the final perturbed data. Census income, bank marketing and heart disease datasets are used for experimentation. While comparing with the state-of-the-art methods, DNN−SDP algorithm provides 97.4% of accuracy with 98.2% of precision, 99% of recall rate and 98.7% of F-measure value. In addition, the fall-out rate, miss rate and false omission rate of the proposed algorithm are less than 4.1%. The DNN−SDP algorithm guarantees the privacy preservation along with data utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助无有采纳,获得10
1秒前
2秒前
聂先生完成签到,获得积分10
2秒前
诗谙发布了新的文献求助30
2秒前
无花果应助美丽谷槐采纳,获得10
2秒前
大个应助白煮蛋蘸酱油采纳,获得10
3秒前
努力加油发布了新的文献求助10
3秒前
秦文平完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
t250完成签到,获得积分10
4秒前
sxx发布了新的文献求助10
5秒前
月下荷花发布了新的文献求助10
5秒前
5秒前
111发布了新的文献求助10
5秒前
YIN关闭了YIN文献求助
6秒前
小巍澜完成签到 ,获得积分10
6秒前
殷润琳发布了新的文献求助10
6秒前
123发布了新的文献求助10
8秒前
lkgxwpf完成签到,获得积分10
10秒前
CN完成签到 ,获得积分10
10秒前
10秒前
打打应助MessOo采纳,获得10
10秒前
充电宝应助谦谦采纳,获得10
11秒前
11秒前
BiuBiu怪完成签到,获得积分10
11秒前
CodeCraft应助没所谓采纳,获得10
11秒前
怡然安南完成签到 ,获得积分10
12秒前
fzh1234发布了新的文献求助10
13秒前
Waney完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
lkgxwpf发布了新的文献求助10
16秒前
酷波er应助北北北采纳,获得10
16秒前
16秒前
lijiuyi完成签到,获得积分10
17秒前
17秒前
17秒前
山色青完成签到,获得积分10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593