The role of land use landscape patterns in the carbon emission reduction: Empirical evidence from China

土地利用 环境科学 中国 地理 碳纤维 温室气体 环境资源管理 生态学 计算机科学 考古 生物 算法 复合数
作者
Zhonglin Tang,Yuting Wang,Min Fu,Jinghua Xue
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:156: 111176-111176 被引量:3
标识
DOI:10.1016/j.ecolind.2023.111176
摘要

The regulation of land use landscape patterns to achieve carbon reduction in pursuit of carbon neutrality has not received sufficient attention. Existing studies have largely focused on specific land use types, such as urban built-up areas. As a result, such studies lack comprehensive regional research, hindering the formulation of integrated carbon reduction policies and sustainable land use planning. Taking the Yangtze River Economic Belt as the study object, this study constructs a quantitative analysis framework that conducts regional land use carbon emission evaluation, landscape pattern analysis, dynamic correlation examination, and measures their respective mechanisms. The results indicate that cropland in the Yangtze River Economic Belt has progressively decreased over the last 20 years (−3.32 %), whilst wetland areas have experienced slow growth (1.81 %) and built-up land has expanded significantly (90.14 %) over the same period. Except for the Interspersion and juxtaposition index (IJI) and Modified Simpson’s evenness index (MEISI), other indices exhibit a decreasing trend with distinct temporal characteristics. By designing and deploying an annual panel regression model, this study quantifies the impact of land use and landscape pattern changes on carbon emissions from a regional perspective. The results reveal that lower levels of landscape heterogeneity and fragmentation and a lower concentration of urban built-up land are conducive to carbon reduction; contrastingly, a decrease in landscape complexity and connectivity increases carbon emissions. Finally, recommendations are put forward regarding land use landscape patterns under the framework of carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
famelc完成签到,获得积分10
1秒前
1秒前
成就的乌龟完成签到,获得积分20
1秒前
2秒前
坐亭下发布了新的文献求助10
4秒前
4秒前
帅气男孩完成签到,获得积分10
4秒前
5秒前
ddsyg126完成签到,获得积分10
5秒前
搜集达人应助Xx丶采纳,获得10
5秒前
CaliU完成签到,获得积分10
6秒前
这里是小豪完成签到,获得积分10
6秒前
烤冷面完成签到,获得积分10
7秒前
7秒前
林夏发布了新的文献求助10
8秒前
顺利的边牧完成签到,获得积分10
8秒前
8秒前
sandy完成签到,获得积分10
8秒前
9秒前
ZJY发布了新的文献求助10
10秒前
阿俊1212发布了新的文献求助10
10秒前
烟花应助爱吃狮子的画采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得30
11秒前
无花果应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
小熊发布了新的文献求助30
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
SYLH应助科研通管家采纳,获得20
11秒前
11秒前
无花果应助兰天采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
k7应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459