Graph transformer-based self-adaptive malicious relation filtering for fraudulent comments detection in social network

计算机科学 变压器 图形 社会关系图 数据挖掘 人工智能 计算机安全 理论计算机科学 社会化媒体 万维网 工程类 电压 电气工程
作者
Liangjun Li,Jian Xu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:280: 111005-111005
标识
DOI:10.1016/j.knosys.2023.111005
摘要

In recent years, Graph Neural Networks (GNNs) have proven to be effective in detecting fraud within social networks by gathering information from neighboring nodes to predict fraudulent actions. However, the continuous evolution and camouflaging tactics of fraudsters, such as establishing malicious connections with legitimate users and mimicking their behaviors, can often elude GNN-based detection methods. To tackle this issue, we propose a multi-order moments graph transformer, named MMGT, to effectively learn node representations through an attention mechanism that captures information of different orders of moments. Building upon this foundation, we further introduce a self-adaptive malicious relation filtering model for fraud detection, denoted as SFGT. Initially, we form a multi-relational graph that encapsulates complex relations within a given social network and derive node representations by accumulating neighbor node and edge data based on an enhanced graph transformer. Subsequently, a threshold-based malicious relation filter mechanism is proposed to eliminate malicious links by assessing the distance between nodes. Furthermore, an adaptive threshold learning policy is developed to bolster the model's performance and its ability to generalize. Finally, extensive experiments are carried out on two public datasets, Amazon and YelpChi, which underscores the effectiveness of our proposed model. The experimental results indicate that our model achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
Aliya完成签到 ,获得积分10
3秒前
坚强怀绿完成签到,获得积分10
3秒前
lbw完成签到 ,获得积分10
4秒前
卡卡发布了新的文献求助10
4秒前
科研通AI6应助一只秤砣采纳,获得10
6秒前
xinyue完成签到,获得积分10
8秒前
恐怖稽器人完成签到,获得积分10
8秒前
黑白菜完成签到,获得积分10
9秒前
烟花应助程风破浪采纳,获得10
11秒前
万能图书馆应助zhuxiaonian采纳,获得10
11秒前
科研通AI5应助喵喵666采纳,获得10
14秒前
希望天下0贩的0应助研友Bn采纳,获得10
15秒前
16秒前
优雅代玉完成签到,获得积分20
16秒前
搔扒完成签到,获得积分10
17秒前
momo完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
葡萄夹子发布了新的文献求助10
20秒前
jing完成签到,获得积分10
22秒前
QQ完成签到,获得积分10
23秒前
kks569完成签到,获得积分10
24秒前
老王完成签到,获得积分10
25秒前
易三木完成签到,获得积分10
26秒前
neko完成签到,获得积分10
28秒前
头上有犄角bb完成签到 ,获得积分10
30秒前
Lucas应助单莫人采纳,获得10
30秒前
TT完成签到,获得积分10
31秒前
哈哈哈完成签到 ,获得积分10
32秒前
33秒前
ayi发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
36秒前
沉静的天曼完成签到 ,获得积分10
37秒前
科研通AI5应助aliu采纳,获得10
38秒前
lkk发布了新的文献求助10
38秒前
QQ发布了新的文献求助10
38秒前
孤独巡礼完成签到,获得积分10
42秒前
42秒前
太阳完成签到,获得积分10
45秒前
科研通AI2S应助大马猴采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5056910
求助须知:如何正确求助?哪些是违规求助? 4282375
关于积分的说明 13345480
捐赠科研通 4099325
什么是DOI,文献DOI怎么找? 2244130
邀请新用户注册赠送积分活动 1250228
关于科研通互助平台的介绍 1180707