Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
wry完成签到,获得积分10
3秒前
mly完成签到 ,获得积分10
4秒前
Jia发布了新的文献求助10
4秒前
我是老大应助Estrella采纳,获得10
5秒前
6秒前
科研通AI6应助萨尔莫斯采纳,获得10
7秒前
风趣问蕊发布了新的文献求助10
8秒前
9秒前
10秒前
在水一方应助贪玩心情采纳,获得10
14秒前
无花果应助优雅的女神采纳,获得10
15秒前
Guowei发布了新的文献求助10
16秒前
酸奶的麻花完成签到 ,获得积分10
19秒前
21秒前
天很蓝完成签到,获得积分10
21秒前
小雨完成签到,获得积分10
27秒前
wxy完成签到,获得积分10
31秒前
大致若鱼完成签到,获得积分10
33秒前
科研通AI6应助阿浮采纳,获得80
38秒前
打打应助wxy采纳,获得10
38秒前
38秒前
41秒前
42秒前
42秒前
Jasper应助整齐便当采纳,获得10
43秒前
愉快的皮卡丘完成签到 ,获得积分10
44秒前
yyy发布了新的文献求助10
46秒前
46秒前
暖部发布了新的文献求助10
46秒前
wzppp发布了新的文献求助10
46秒前
蟹黄丸子发布了新的文献求助10
46秒前
48秒前
微笑立轩完成签到,获得积分10
50秒前
50秒前
鼠大帅发布了新的文献求助10
51秒前
58秒前
超级瑶瑶发布了新的文献求助10
1分钟前
林夕完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963