Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助鲁万仇采纳,获得10
刚刚
甜蜜冰萍发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
默listening完成签到,获得积分10
2秒前
2秒前
Jasper应助小城旧事采纳,获得10
2秒前
超人完成签到,获得积分10
3秒前
高大的异形完成签到 ,获得积分10
4秒前
Mannose完成签到,获得积分10
5秒前
Albert-JT完成签到,获得积分10
5秒前
5秒前
淡淡半莲发布了新的文献求助10
6秒前
慕青应助TaoTaooooII采纳,获得10
6秒前
完美世界应助蓝风铃采纳,获得10
7秒前
JamesPei应助Able阿拉基采纳,获得10
7秒前
7秒前
淡然发布了新的文献求助10
7秒前
李沁宣完成签到,获得积分20
8秒前
现代的曲奇完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
天天快乐应助偏偏海采纳,获得10
10秒前
wondor1111发布了新的文献求助10
11秒前
11秒前
11秒前
Rabbit完成签到 ,获得积分10
11秒前
杨旭发布了新的文献求助10
12秒前
高兴摇伽完成签到,获得积分10
12秒前
123完成签到 ,获得积分10
12秒前
rabbitbeibei发布了新的文献求助10
12秒前
chuxin完成签到,获得积分10
12秒前
El发布了新的文献求助20
13秒前
娃娃完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277