清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得30
28秒前
gszy1975完成签到,获得积分10
56秒前
Panini完成签到 ,获得积分10
59秒前
1分钟前
HHH完成签到 ,获得积分10
1分钟前
明理从露完成签到 ,获得积分10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
zjspidany应助幻梦如歌采纳,获得10
3分钟前
zcydbttj2011完成签到 ,获得积分10
3分钟前
故渊完成签到,获得积分10
4分钟前
北国雪未消完成签到 ,获得积分10
4分钟前
ccc完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
宇心应助科研通管家采纳,获得10
4分钟前
江三村完成签到 ,获得积分10
4分钟前
Wang完成签到 ,获得积分20
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
所所应助科研通管家采纳,获得10
6分钟前
7分钟前
Zzz_Carlos完成签到 ,获得积分10
8分钟前
小脚丫完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
竹筏过海应助细心的语蓉采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
10分钟前
羫孔发布了新的文献求助10
10分钟前
ddddddd完成签到 ,获得积分10
12分钟前
12分钟前
羫孔发布了新的文献求助10
12分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
震动的听枫完成签到,获得积分10
12分钟前
Owen应助Omni采纳,获得10
12分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314426
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622422
什么是DOI,文献DOI怎么找? 1434534
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881