Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
代码小白发布了新的文献求助10
刚刚
鳗鱼友灵发布了新的文献求助10
1秒前
明亮的泥猴桃完成签到,获得积分10
1秒前
Eliauk完成签到,获得积分10
1秒前
云端发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
脑洞疼应助jack采纳,获得10
3秒前
3秒前
冰淇淋发布了新的文献求助10
3秒前
风趣的从梦完成签到,获得积分10
3秒前
木木木完成签到,获得积分10
4秒前
鲤鱼水壶完成签到,获得积分10
4秒前
KHromance发布了新的文献求助10
5秒前
连长完成签到,获得积分10
5秒前
5秒前
ppp发布了新的文献求助10
5秒前
6秒前
6秒前
退而求其次完成签到,获得积分10
7秒前
与可发布了新的文献求助10
8秒前
9秒前
太阳完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
CZLhaust发布了新的文献求助10
10秒前
敢敢发布了新的文献求助10
10秒前
khjia完成签到,获得积分10
10秒前
jack完成签到,获得积分10
11秒前
12秒前
浮浮世世发布了新的文献求助50
12秒前
12秒前
boomboom发布了新的文献求助10
12秒前
ppp完成签到,获得积分10
13秒前
CZLhaust完成签到,获得积分10
14秒前
所所应助Ronnie采纳,获得10
15秒前
华仔应助太阳采纳,获得10
16秒前
浮浮世世完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095