Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助yg采纳,获得10
1秒前
gjgy完成签到,获得积分10
2秒前
枳实发布了新的文献求助10
3秒前
3秒前
4秒前
皮皮虾完成签到 ,获得积分10
5秒前
5秒前
5秒前
一位名圆完成签到,获得积分10
6秒前
沉默钢笔完成签到,获得积分10
6秒前
7秒前
7秒前
独特的春发布了新的文献求助10
8秒前
半山完成签到,获得积分10
8秒前
8秒前
虚幻青丝完成签到,获得积分10
8秒前
嘟噜嘟噜应助kryptonite采纳,获得10
9秒前
嘟噜嘟噜应助kryptonite采纳,获得10
9秒前
嘟噜嘟噜应助kryptonite采纳,获得10
9秒前
xxfsx应助kryptonite采纳,获得10
9秒前
酷酷世开完成签到,获得积分10
10秒前
Alixes发布了新的文献求助10
10秒前
avalanche应助gkw采纳,获得80
10秒前
jeniwu完成签到 ,获得积分10
11秒前
11秒前
11秒前
黄鹦鹉发布了新的文献求助10
12秒前
人123456发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
慕青应助loogn7采纳,获得10
15秒前
15秒前
大豹子发布了新的文献求助10
18秒前
18秒前
JamesPei应助人123456采纳,获得10
19秒前
鱼蛋完成签到 ,获得积分10
20秒前
温与暖发布了新的文献求助10
20秒前
22秒前
23秒前
23秒前
仰望星空扭到腰完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425655
求助须知:如何正确求助?哪些是违规求助? 4539576
关于积分的说明 14168992
捐赠科研通 4457277
什么是DOI,文献DOI怎么找? 2444461
邀请新用户注册赠送积分活动 1435388
关于科研通互助平台的介绍 1412838