Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXQ完成签到,获得积分10
刚刚
1秒前
Elena完成签到 ,获得积分10
1秒前
shaft完成签到,获得积分10
1秒前
卿晓晓完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
吴祎鸽完成签到,获得积分10
3秒前
茶米发布了新的文献求助10
3秒前
boblau完成签到 ,获得积分10
3秒前
Akim应助薛定谔的猫采纳,获得10
3秒前
3秒前
快乐小菜瓜完成签到 ,获得积分10
3秒前
3秒前
Aluhaer应助yj采纳,获得10
3秒前
自分目覚发布了新的文献求助10
4秒前
Starry完成签到,获得积分20
4秒前
zhou完成签到 ,获得积分10
4秒前
明明完成签到,获得积分10
4秒前
知蜜10完成签到,获得积分10
5秒前
明亮夏旋完成签到 ,获得积分10
5秒前
lin发布了新的文献求助20
5秒前
6秒前
科研通AI5应助碧蓝铁身采纳,获得10
7秒前
SciGPT应助科研小废物采纳,获得10
7秒前
8秒前
酷波er应助yylfy采纳,获得10
9秒前
快乐咸鱼完成签到,获得积分10
9秒前
夏季完成签到,获得积分10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
Tourist应助科研通管家采纳,获得150
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
七岁的那一年捉住那只蝉完成签到 ,获得积分10
10秒前
端庄的山蝶完成签到,获得积分10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
可爱的函函应助JoJo采纳,获得10
10秒前
Tourist应助科研通管家采纳,获得150
10秒前
大模型应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155371
求助须知:如何正确求助?哪些是违规求助? 4351063
关于积分的说明 13547192
捐赠科研通 4193867
什么是DOI,文献DOI怎么找? 2300162
邀请新用户注册赠送积分活动 1300091
关于科研通互助平台的介绍 1245111