清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱子完成签到 ,获得积分10
7秒前
薛家泰完成签到 ,获得积分10
10秒前
chcmy完成签到 ,获得积分0
32秒前
胡可完成签到 ,获得积分10
40秒前
43秒前
YifanWang应助科研通管家采纳,获得30
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
49秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
栾小鱼发布了新的文献求助10
1分钟前
栾小鱼完成签到,获得积分10
1分钟前
1分钟前
SheepIce完成签到,获得积分10
2分钟前
暴躁的奇异果完成签到,获得积分10
2分钟前
chenlc971125完成签到 ,获得积分10
2分钟前
外向的芒果完成签到 ,获得积分10
2分钟前
上官若男应助al采纳,获得10
2分钟前
自然代亦完成签到 ,获得积分10
2分钟前
3分钟前
al发布了新的文献求助10
3分钟前
al完成签到 ,获得积分0
3分钟前
炎炎夏无声完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
苗笑卉发布了新的文献求助50
4分钟前
NexusExplorer应助苗笑卉采纳,获得10
4分钟前
苗笑卉完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
laohei94_6完成签到 ,获得积分10
5分钟前
5分钟前
merrylake完成签到 ,获得积分10
5分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
5分钟前
Jarvis完成签到,获得积分10
5分钟前
5分钟前
lingling完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450206
求助须知:如何正确求助?哪些是违规求助? 4558052
关于积分的说明 14265378
捐赠科研通 4481452
什么是DOI,文献DOI怎么找? 2454860
邀请新用户注册赠送积分活动 1445610
关于科研通互助平台的介绍 1421596