清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
还单身的惜文完成签到,获得积分10
2秒前
6秒前
20秒前
英姑应助白华苍松采纳,获得10
23秒前
Flora完成签到,获得积分10
26秒前
Huzhu应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得30
31秒前
35秒前
miko完成签到 ,获得积分10
39秒前
56秒前
hamliton发布了新的文献求助10
1分钟前
1分钟前
1分钟前
852应助ceeray23采纳,获得20
1分钟前
breeze完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
2分钟前
Jackie发布了新的文献求助10
2分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
Jackie完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
希望天下0贩的0应助ceeray23采纳,获得20
3分钟前
3分钟前
白华苍松发布了新的文献求助20
3分钟前
3分钟前
程瑶瑶瑶完成签到 ,获得积分10
3分钟前
Pattis完成签到 ,获得积分10
3分钟前
3分钟前
香菜张发布了新的文献求助10
3分钟前
赘婿应助白华苍松采纳,获得10
3分钟前
4分钟前
4分钟前
脑洞疼应助科研进化中采纳,获得10
4分钟前
4分钟前
Alisha完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529289
求助须知:如何正确求助?哪些是违规求助? 4618433
关于积分的说明 14562625
捐赠科研通 4557474
什么是DOI,文献DOI怎么找? 2497536
邀请新用户注册赠送积分活动 1477750
关于科研通互助平台的介绍 1449175