Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴军霄完成签到,获得积分10
1秒前
小马甲应助hj采纳,获得10
1秒前
rehnatbztdghne5完成签到,获得积分10
1秒前
2秒前
zlx完成签到,获得积分10
2秒前
2秒前
黄婷发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
Lusteri发布了新的文献求助10
4秒前
xiaoming完成签到,获得积分10
4秒前
香蕉觅云应助巴啦啦采纳,获得10
4秒前
6秒前
cc完成签到,获得积分10
6秒前
6秒前
7秒前
嘿嘿发布了新的文献求助10
7秒前
天天快乐应助Violeta采纳,获得10
7秒前
华仔应助今夜无人入眠采纳,获得10
7秒前
8秒前
9秒前
山野完成签到,获得积分10
10秒前
梦将军发布了新的文献求助30
10秒前
pass发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
后来完成签到,获得积分10
11秒前
内向的小白菜应助xie采纳,获得10
11秒前
ZOOOEY完成签到,获得积分20
12秒前
春天的粥完成签到 ,获得积分10
12秒前
12秒前
lsh完成签到,获得积分10
12秒前
huahuahua完成签到,获得积分10
13秒前
14秒前
Xie发布了新的文献求助10
14秒前
14秒前
文献达人发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552820
求助须知:如何正确求助?哪些是违规求助? 4637591
关于积分的说明 14649723
捐赠科研通 4579329
什么是DOI,文献DOI怎么找? 2511568
邀请新用户注册赠送积分活动 1486590
关于科研通互助平台的介绍 1457559