亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王金煜发布了新的文献求助30
7秒前
王金煜完成签到,获得积分20
13秒前
真实的bbbb完成签到,获得积分10
13秒前
14秒前
嘿嘿应助breeze采纳,获得30
24秒前
ceeray23应助科研通管家采纳,获得10
25秒前
ceeray23应助科研通管家采纳,获得10
25秒前
29秒前
TTTHANKS完成签到 ,获得积分10
31秒前
王某完成签到 ,获得积分10
37秒前
40秒前
枖堇发布了新的文献求助10
41秒前
Ava应助汤婆婆采纳,获得10
46秒前
喜悦的虔发布了新的文献求助10
46秒前
47秒前
max完成签到 ,获得积分10
51秒前
55秒前
嘿嘿应助breeze采纳,获得30
58秒前
汤婆婆发布了新的文献求助10
1分钟前
一颗苹果完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cyy发布了新的文献求助10
1分钟前
汤婆婆完成签到,获得积分10
1分钟前
1分钟前
一颗苹果发布了新的文献求助10
1分钟前
GGBond完成签到 ,获得积分10
1分钟前
土豪的摩托完成签到 ,获得积分10
1分钟前
1分钟前
一点发布了新的文献求助10
1分钟前
海边的曼彻斯特完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
乐乐应助Yuanyuan采纳,获得10
1分钟前
领导范儿应助朴素寄文采纳,获得10
1分钟前
苏震坤发布了新的文献求助10
1分钟前
一颗苹果发布了新的文献求助10
1分钟前
小张完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701831
捐赠科研通 4594464
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696