已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
梁海萍发布了新的文献求助10
1秒前
Hhhhh发布了新的文献求助10
2秒前
zfh1341发布了新的文献求助10
3秒前
Erich完成签到 ,获得积分10
3秒前
4秒前
SuyingGuo发布了新的文献求助10
4秒前
4秒前
Akim应助高挑的小虾米采纳,获得10
5秒前
夏小胖发布了新的文献求助10
5秒前
顾矜应助tang采纳,获得10
5秒前
就看最后一篇完成签到 ,获得积分0
7秒前
顾良发布了新的文献求助20
9秒前
陶醉的蜜蜂完成签到,获得积分10
10秒前
SOBER刘晗发布了新的文献求助10
10秒前
Anoxra完成签到 ,获得积分10
12秒前
Chemistry完成签到 ,获得积分10
13秒前
zfh1341完成签到,获得积分10
14秒前
娄心昊应助尹忆梅采纳,获得30
15秒前
16秒前
崔梦楠完成签到 ,获得积分10
16秒前
希望天下0贩的0应助杨立采纳,获得10
17秒前
秋老众少年完成签到 ,获得积分10
18秒前
夏小胖完成签到,获得积分10
18秒前
聪明勇敢有力气完成签到 ,获得积分10
19秒前
19秒前
豆豆眼完成签到,获得积分20
19秒前
21秒前
时梦冉发布了新的文献求助10
23秒前
科研通AI6应助夏小胖采纳,获得10
24秒前
朱朱完成签到,获得积分10
24秒前
杨立完成签到,获得积分10
26秒前
Amelia完成签到 ,获得积分10
27秒前
浮游应助醉熏的冬易采纳,获得10
28秒前
醒了没醒醒完成签到 ,获得积分10
28秒前
沉静的安青完成签到,获得积分10
29秒前
欣欣完成签到 ,获得积分10
32秒前
32秒前
123321完成签到 ,获得积分10
33秒前
alanbike完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497938
求助须知:如何正确求助?哪些是违规求助? 4595334
关于积分的说明 14448871
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481306
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438169