Exploring Flat Minima for Domain Generalization with Large Learning Rates

最大值和最小值 过度拟合 计算机科学 一般化 算法 人工智能 机器学习 数学 数学优化 人工神经网络 数学分析
作者
Jian Zhang,Lei Qi,Yinghuan Shi,Yang Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.06337
摘要

Domain Generalization (DG) aims to generalize to arbitrary unseen domains. A promising approach to improve model generalization in DG is the identification of flat minima. One typical method for this task is SWAD, which involves averaging weights along the training trajectory. However, the success of weight averaging depends on the diversity of weights, which is limited when training with a small learning rate. Instead, we observe that leveraging a large learning rate can simultaneously promote weight diversity and facilitate the identification of flat regions in the loss landscape. However, employing a large learning rate suffers from the convergence problem, which cannot be resolved by simply averaging the training weights. To address this issue, we introduce a training strategy called Lookahead which involves the weight interpolation, instead of average, between fast and slow weights. The fast weight explores the weight space with a large learning rate, which is not converged while the slow weight interpolates with it to ensure the convergence. Besides, weight interpolation also helps identify flat minima by implicitly optimizing the local entropy loss that measures flatness. To further prevent overfitting during training, we propose two variants to regularize the training weight with weighted averaged weight or with accumulated history weight. Taking advantage of this new perspective, our methods achieve state-of-the-art performance on both classification and semantic segmentation domain generalization benchmarks. The code is available at https://github.com/koncle/DG-with-Large-LR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coco234完成签到,获得积分10
1秒前
NineLiar完成签到,获得积分10
1秒前
ZS发布了新的文献求助10
1秒前
Zorion发布了新的文献求助10
1秒前
乐观依云发布了新的文献求助10
1秒前
wise111发布了新的文献求助10
2秒前
2秒前
LJ发布了新的文献求助10
2秒前
3秒前
4秒前
菠萝吹雪发布了新的文献求助10
4秒前
ljact完成签到,获得积分10
5秒前
5秒前
ding应助优秀问丝采纳,获得10
5秒前
心驰天外完成签到,获得积分10
6秒前
牵猫散步的鱼完成签到,获得积分10
6秒前
李禹晗发布了新的文献求助10
6秒前
6秒前
yolo完成签到,获得积分10
7秒前
7秒前
小东西完成签到,获得积分10
7秒前
7秒前
天天快乐应助谦谦采纳,获得10
8秒前
田様应助陈M雯采纳,获得10
8秒前
want_top_journal完成签到,获得积分10
9秒前
欢呼南晴完成签到,获得积分10
9秒前
ztq完成签到 ,获得积分10
9秒前
jiejie完成签到,获得积分10
10秒前
秦风发布了新的文献求助10
10秒前
飞鸟吃鱼完成签到 ,获得积分10
10秒前
pluto应助leo采纳,获得10
10秒前
大方师发布了新的文献求助10
11秒前
小狗呼噜噜完成签到 ,获得积分10
12秒前
深情安青应助HJQ采纳,获得10
12秒前
fzdzc完成签到 ,获得积分10
12秒前
萌only发布了新的文献求助10
13秒前
莫愁发布了新的文献求助10
13秒前
枝头树上的布谷鸟完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769