Automatic segmentation of large-scale CT image datasets for detailed body composition analysis

分割 医学 脂肪组织 计算机科学 人工智能 内科学
作者
Nouman Ahmad,Robin Strand,Björn Sparresäter,Sambit Tarai,Elin Lundström,Göran Bergström,Håkan Åhlström,Joel Kullberg
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:24 (1) 被引量:6
标识
DOI:10.1186/s12859-023-05462-2
摘要

Abstract Background Body composition (BC) is an important factor in determining the risk of type 2-diabetes and cardiovascular disease. Computed tomography (CT) is a useful imaging technique for studying BC, however manual segmentation of CT images is time-consuming and subjective. The purpose of this study is to develop and evaluate fully automated segmentation techniques applicable to a 3-slice CT imaging protocol, consisting of single slices at the level of the liver, abdomen, and thigh, allowing detailed analysis of numerous tissues and organs. Methods The study used more than 4000 CT subjects acquired from the large-scale SCAPIS and IGT cohort to train and evaluate four convolutional neural network based architectures: ResUNET, UNET++, Ghost-UNET, and the proposed Ghost-UNET++. The segmentation techniques were developed and evaluated for automated segmentation of the liver, spleen, skeletal muscle, bone marrow, cortical bone, and various adipose tissue depots, including visceral (VAT), intraperitoneal (IPAT), retroperitoneal (RPAT), subcutaneous (SAT), deep (DSAT), and superficial SAT (SSAT), as well as intermuscular adipose tissue (IMAT). The models were trained and validated for each target using tenfold cross-validation and test sets. Results The Dice scores on cross validation in SCAPIS were: ResUNET 0.964 (0.909–0.996), UNET++ 0.981 (0.927–0.996), Ghost-UNET 0.961 (0.904–0.991), and Ghost-UNET++ 0.968 (0.910–0.994). All four models showed relatively strong results, however UNET++ had the best performance overall. Ghost-UNET++ performed competitively compared to UNET++ and showed a more computationally efficient approach. Conclusion Fully automated segmentation techniques can be successfully applied to a 3-slice CT imaging protocol to analyze multiple tissues and organs related to BC. The overall best performance was achieved by UNET++, against which Ghost-UNET++ showed competitive results based on a more computationally efficient approach. The use of fully automated segmentation methods can reduce analysis time and provide objective results in large-scale studies of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦雪珊完成签到,获得积分10
1秒前
1秒前
苹果发夹完成签到,获得积分10
2秒前
张英俊发布了新的文献求助10
2秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
传奇3应助as采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
瞿亭龙完成签到,获得积分10
7秒前
世纪飞虎完成签到,获得积分10
8秒前
张英俊完成签到,获得积分20
10秒前
沉静的迎荷完成签到 ,获得积分10
12秒前
12秒前
十九集完成签到,获得积分10
12秒前
14秒前
16秒前
简单男孩完成签到,获得积分10
16秒前
陶醉的又夏完成签到 ,获得积分10
16秒前
colorful完成签到 ,获得积分10
16秒前
仇文琪发布了新的文献求助10
19秒前
bioglia发布了新的文献求助10
19秒前
满意沛槐完成签到 ,获得积分10
20秒前
阿蒙完成签到,获得积分10
20秒前
不要引力完成签到,获得积分10
23秒前
23秒前
26秒前
明亮的遥完成签到 ,获得积分10
27秒前
不要引力发布了新的文献求助10
27秒前
28秒前
好好学习完成签到,获得积分10
29秒前
30秒前
牛与马发布了新的文献求助10
34秒前
37秒前
fireking_sid完成签到,获得积分10
39秒前
OUHUILIN发布了新的文献求助10
39秒前
lzy完成签到,获得积分10
39秒前
ice完成签到 ,获得积分10
39秒前
默默向雪完成签到,获得积分10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262667
求助须知:如何正确求助?哪些是违规求助? 2903265
关于积分的说明 8324749
捐赠科研通 2573377
什么是DOI,文献DOI怎么找? 1398211
科研通“疑难数据库(出版商)”最低求助积分说明 654024
邀请新用户注册赠送积分活动 632642