Automatic segmentation of large-scale CT image datasets for detailed body composition analysis

分割 医学 脂肪组织 计算机科学 人工智能 内科学
作者
Nouman Ahmad,Robin Strand,Björn Sparresäter,Sambit Tarai,Elin Lundström,Göran Bergström,Håkan Åhlström,Joel Kullberg
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1) 被引量:6
标识
DOI:10.1186/s12859-023-05462-2
摘要

Abstract Background Body composition (BC) is an important factor in determining the risk of type 2-diabetes and cardiovascular disease. Computed tomography (CT) is a useful imaging technique for studying BC, however manual segmentation of CT images is time-consuming and subjective. The purpose of this study is to develop and evaluate fully automated segmentation techniques applicable to a 3-slice CT imaging protocol, consisting of single slices at the level of the liver, abdomen, and thigh, allowing detailed analysis of numerous tissues and organs. Methods The study used more than 4000 CT subjects acquired from the large-scale SCAPIS and IGT cohort to train and evaluate four convolutional neural network based architectures: ResUNET, UNET++, Ghost-UNET, and the proposed Ghost-UNET++. The segmentation techniques were developed and evaluated for automated segmentation of the liver, spleen, skeletal muscle, bone marrow, cortical bone, and various adipose tissue depots, including visceral (VAT), intraperitoneal (IPAT), retroperitoneal (RPAT), subcutaneous (SAT), deep (DSAT), and superficial SAT (SSAT), as well as intermuscular adipose tissue (IMAT). The models were trained and validated for each target using tenfold cross-validation and test sets. Results The Dice scores on cross validation in SCAPIS were: ResUNET 0.964 (0.909–0.996), UNET++ 0.981 (0.927–0.996), Ghost-UNET 0.961 (0.904–0.991), and Ghost-UNET++ 0.968 (0.910–0.994). All four models showed relatively strong results, however UNET++ had the best performance overall. Ghost-UNET++ performed competitively compared to UNET++ and showed a more computationally efficient approach. Conclusion Fully automated segmentation techniques can be successfully applied to a 3-slice CT imaging protocol to analyze multiple tissues and organs related to BC. The overall best performance was achieved by UNET++, against which Ghost-UNET++ showed competitive results based on a more computationally efficient approach. The use of fully automated segmentation methods can reduce analysis time and provide objective results in large-scale studies of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可完成签到,获得积分10
2秒前
大翟完成签到 ,获得积分10
2秒前
善学以致用应助ddddd采纳,获得10
2秒前
3秒前
3秒前
爆米花应助大力芸采纳,获得10
5秒前
研友_VZG7GZ应助谦让的樱采纳,获得10
5秒前
个性紫完成签到 ,获得积分10
6秒前
Robert完成签到,获得积分10
6秒前
heavennew完成签到,获得积分10
6秒前
st发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI2S应助zzq采纳,获得10
9秒前
完美世界应助笨笨薯片采纳,获得10
9秒前
11秒前
11秒前
12秒前
陸陸大顺发布了新的文献求助10
12秒前
SYLH应助st采纳,获得10
12秒前
yan发布了新的文献求助10
13秒前
雪山飞龙发布了新的文献求助10
13秒前
CodeCraft应助大家好车架号h采纳,获得10
15秒前
ddddd发布了新的文献求助10
15秒前
憨憨的小于完成签到,获得积分10
15秒前
烟花应助满眼星辰采纳,获得10
16秒前
友好的荣轩完成签到,获得积分10
16秒前
爆米花应助no_one采纳,获得10
16秒前
17秒前
天真大神发布了新的文献求助10
18秒前
19秒前
st完成签到,获得积分20
19秒前
21秒前
21秒前
22秒前
22秒前
笨笨薯片发布了新的文献求助10
22秒前
淡淡夕阳发布了新的文献求助10
24秒前
科研通AI5应助sunnie采纳,获得10
24秒前
落后的怀梦完成签到 ,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403