已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic segmentation of large-scale CT image datasets for detailed body composition analysis

分割 医学 脂肪组织 计算机科学 人工智能 内科学
作者
Nouman Ahmad,Robin Strand,Björn Sparresäter,Sambit Tarai,Elin Lundström,Göran Bergström,Håkan Åhlström,Joel Kullberg
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1) 被引量:6
标识
DOI:10.1186/s12859-023-05462-2
摘要

Abstract Background Body composition (BC) is an important factor in determining the risk of type 2-diabetes and cardiovascular disease. Computed tomography (CT) is a useful imaging technique for studying BC, however manual segmentation of CT images is time-consuming and subjective. The purpose of this study is to develop and evaluate fully automated segmentation techniques applicable to a 3-slice CT imaging protocol, consisting of single slices at the level of the liver, abdomen, and thigh, allowing detailed analysis of numerous tissues and organs. Methods The study used more than 4000 CT subjects acquired from the large-scale SCAPIS and IGT cohort to train and evaluate four convolutional neural network based architectures: ResUNET, UNET++, Ghost-UNET, and the proposed Ghost-UNET++. The segmentation techniques were developed and evaluated for automated segmentation of the liver, spleen, skeletal muscle, bone marrow, cortical bone, and various adipose tissue depots, including visceral (VAT), intraperitoneal (IPAT), retroperitoneal (RPAT), subcutaneous (SAT), deep (DSAT), and superficial SAT (SSAT), as well as intermuscular adipose tissue (IMAT). The models were trained and validated for each target using tenfold cross-validation and test sets. Results The Dice scores on cross validation in SCAPIS were: ResUNET 0.964 (0.909–0.996), UNET++ 0.981 (0.927–0.996), Ghost-UNET 0.961 (0.904–0.991), and Ghost-UNET++ 0.968 (0.910–0.994). All four models showed relatively strong results, however UNET++ had the best performance overall. Ghost-UNET++ performed competitively compared to UNET++ and showed a more computationally efficient approach. Conclusion Fully automated segmentation techniques can be successfully applied to a 3-slice CT imaging protocol to analyze multiple tissues and organs related to BC. The overall best performance was achieved by UNET++, against which Ghost-UNET++ showed competitive results based on a more computationally efficient approach. The use of fully automated segmentation methods can reduce analysis time and provide objective results in large-scale studies of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到,获得积分10
2秒前
柚又完成签到 ,获得积分10
2秒前
好吃鱼完成签到 ,获得积分10
3秒前
xxx完成签到 ,获得积分10
3秒前
一只抱枕完成签到,获得积分20
5秒前
勇往直前发布了新的文献求助10
5秒前
6秒前
wrimer完成签到 ,获得积分10
6秒前
科目三应助等待的香魔采纳,获得10
7秒前
Tohka完成签到 ,获得积分10
7秒前
悄悄完成签到 ,获得积分10
8秒前
sss完成签到 ,获得积分10
9秒前
9秒前
淡淡莞完成签到,获得积分10
10秒前
10秒前
12秒前
奥真奈美77完成签到 ,获得积分10
13秒前
xxm发布了新的文献求助10
14秒前
axi完成签到,获得积分10
15秒前
Li应助福建农林太学采纳,获得10
16秒前
情怀应助福建农林太学采纳,获得10
16秒前
希望天下0贩的0应助WJY采纳,获得20
16秒前
Jennie发布了新的文献求助10
17秒前
ccm驳回了田様应助
18秒前
小闵发布了新的文献求助10
19秒前
丁老三完成签到 ,获得积分10
19秒前
GingerF举报讨厌下雨天求助涉嫌违规
22秒前
温凉挽久完成签到,获得积分20
22秒前
22秒前
22秒前
福建农林太学完成签到,获得积分20
23秒前
Crystal完成签到,获得积分10
24秒前
小摩尔完成签到 ,获得积分10
24秒前
27秒前
27秒前
scanker1981完成签到,获得积分10
28秒前
Muncy完成签到 ,获得积分10
29秒前
桉豆完成签到 ,获得积分10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185452
求助须知:如何正确求助?哪些是违规求助? 4370908
关于积分的说明 13611416
捐赠科研通 4223147
什么是DOI,文献DOI怎么找? 2316194
邀请新用户注册赠送积分活动 1314790
关于科研通互助平台的介绍 1263766