Capturing the Individual Deviations From Normative Models of Brain Structure for Depression Diagnosis and Treatment

规范性 心理学 萧条(经济学) 决策规范模型 灰质 结构方程建模 人类连接体项目 临床心理学 医学 神经科学 磁共振成像 白质 计算机科学 机器学习 放射科 宏观经济学 经济 哲学 认识论 功能连接
作者
Junneng Shao,Jiaolong Qin,Huan Wang,Yurong Sun,Wei Zhang,Xinyi Wang,Ting Wang,Xue Li,Zhijian Yao,Qing Lü
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:95 (5): 403-413 被引量:4
标识
DOI:10.1016/j.biopsych.2023.08.005
摘要

Abstract

Background

The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which thereafter limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of grey matter volume (GMV).

Methods

We enrolled 1,092 participants totally, including 187 depression patients and 905 healthy controls (HCs). Structural MRI of HCs from the Human Connectome Project (n=510) and REST-meta-MDD Project (n=229) were used to establish normative model across the lifespan in 18-65 years for each brain region. Deviations from normative range for 187 patients and 166 HCs, recruited from two local hospitals, were captured as normative probability maps (NPMs), which was used to identify the disease risk and treatment-related latent factors.

Results

Unlike case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual NPMs (AUC range, 0.7146-0.7836) showed better performance than those trained with original GMV (AUC range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on NPMs, suggesting distinct treatment response and inclination.

Conclusion

Capturing the personalization deviations from normative range could help understand the heterogeneous neurobiology of depression, thus contribute to guide diagnosis and treatment for depression clinically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还单身的睿渊完成签到,获得积分10
刚刚
英姑应助judy采纳,获得30
2秒前
2秒前
3秒前
稀松发布了新的文献求助10
5秒前
被窝哲学家完成签到,获得积分10
6秒前
刘欢发布了新的文献求助10
8秒前
脑洞疼应助LCct采纳,获得10
10秒前
酷波er应助jiangjiang采纳,获得10
10秒前
tian发布了新的文献求助30
11秒前
搞怪藏今完成签到 ,获得积分10
11秒前
13秒前
14秒前
云鲲完成签到,获得积分10
15秒前
佳仔完成签到,获得积分10
15秒前
领导范儿应助橘子采纳,获得10
15秒前
16秒前
原野小年发布了新的文献求助10
17秒前
所所应助七七采纳,获得10
18秒前
酷酷的安柏完成签到 ,获得积分10
19秒前
天天快乐应助渤大彭于晏采纳,获得10
19秒前
HY兑完成签到,获得积分10
20秒前
小蘑菇应助逗号先生采纳,获得10
20秒前
cc完成签到 ,获得积分20
21秒前
21秒前
橘子完成签到,获得积分20
22秒前
爱笑梦易完成签到,获得积分10
23秒前
活泼富完成签到,获得积分20
23秒前
紧张的十三完成签到,获得积分20
24秒前
不会吹口哨完成签到,获得积分10
24秒前
25秒前
完美的香露完成签到,获得积分20
25秒前
26秒前
26秒前
26秒前
乐乐应助Forward采纳,获得10
26秒前
s1kl完成签到,获得积分10
26秒前
阿王发布了新的文献求助10
27秒前
独特易形完成签到 ,获得积分10
27秒前
小蘑菇应助JIE采纳,获得10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210