Capturing the Individual Deviations From Normative Models of Brain Structure for Depression Diagnosis and Treatment

规范性 心理学 萧条(经济学) 决策规范模型 灰质 结构方程建模 人类连接体项目 临床心理学 医学 神经科学 磁共振成像 白质 计算机科学 机器学习 放射科 宏观经济学 经济 哲学 认识论 功能连接
作者
Junneng Shao,Jiaolong Qin,Huan Wang,Yurong Sun,Wei Zhang,Xinyi Wang,Ting Wang,Xue Li,Zhijian Yao,Qing Lü
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:95 (5): 403-413 被引量:8
标识
DOI:10.1016/j.biopsych.2023.08.005
摘要

Abstract

Background

The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which thereafter limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of grey matter volume (GMV).

Methods

We enrolled 1,092 participants totally, including 187 depression patients and 905 healthy controls (HCs). Structural MRI of HCs from the Human Connectome Project (n=510) and REST-meta-MDD Project (n=229) were used to establish normative model across the lifespan in 18-65 years for each brain region. Deviations from normative range for 187 patients and 166 HCs, recruited from two local hospitals, were captured as normative probability maps (NPMs), which was used to identify the disease risk and treatment-related latent factors.

Results

Unlike case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual NPMs (AUC range, 0.7146-0.7836) showed better performance than those trained with original GMV (AUC range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on NPMs, suggesting distinct treatment response and inclination.

Conclusion

Capturing the personalization deviations from normative range could help understand the heterogeneous neurobiology of depression, thus contribute to guide diagnosis and treatment for depression clinically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助传统的海露采纳,获得10
1秒前
学术刘亦菲完成签到,获得积分10
1秒前
成就的烧鹅完成签到,获得积分20
1秒前
2秒前
dd发布了新的文献求助10
2秒前
luoshi应助leon采纳,获得30
3秒前
3秒前
wang完成签到,获得积分10
3秒前
可爱的函函应助hu采纳,获得10
3秒前
3秒前
我测你码关注了科研通微信公众号
4秒前
下课了吧发布了新的文献求助10
4秒前
jy发布了新的文献求助10
4秒前
绘梨衣完成签到,获得积分10
5秒前
数据线完成签到,获得积分10
5秒前
完美世界应助甜甜的难敌采纳,获得30
6秒前
满堂花醉三千客完成签到 ,获得积分10
6秒前
6秒前
6秒前
gao完成签到,获得积分10
7秒前
LiuRuizhe完成签到,获得积分10
7秒前
绘梨衣发布了新的文献求助10
7秒前
7秒前
8秒前
淡定紫菱发布了新的文献求助10
9秒前
李繁蕊发布了新的文献求助10
11秒前
万能图书馆应助愉快寄真采纳,获得10
11秒前
Rrr发布了新的文献求助10
11秒前
12秒前
12秒前
高兴藏花发布了新的文献求助10
12秒前
13秒前
顾闭月发布了新的文献求助10
15秒前
励志小薛完成签到,获得积分20
16秒前
doudou完成签到,获得积分10
16秒前
17秒前
Ting完成签到,获得积分10
18秒前
高兴藏花完成签到 ,获得积分20
18秒前
健忘的沛蓝完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794