储能
太阳能
氧化还原
能量转换
光电化学电池
电化学
电化学能量转换
化学能
电池(电)
太阳能电池
化学
材料科学
光电子学
电极
无机化学
电解质
物理
电气工程
功率(物理)
物理化学
热力学
工程类
有机化学
量子力学
作者
Xiang Zhang,Lei Jiao,Yaobing Wang
标识
DOI:10.1021/acs.accounts.4c00222
摘要
ConspectusSolar-to-electrochemical energy storage is one of the essential solar energy utilization pathways alongside solar-to-electricity and solar-to-chemical conversion. A coupled solar battery enables direct solar-to-electrochemical energy storage via photocoupled ion transfer using photoelectrochemical materials with light absorption/charge transfer and redox capabilities. Common photoelectrochemical materials face challenges due to insufficient solar spectrum utilization, which restricts their redox potential window and constrains energy conversion efficiency. In contrast, molecular photoelectrochemical energy storage materials are promising for their mechanism of exciton-involved redox reaction that allows for extra energy utilization from hot excitons generated by superbandgap excitation and localized heat after absorption of sub-bandgap photons. This enables more efficient redox reactions with a less restricted redox potentials window and, thus, better utilization of the full solar spectrum. Despite these advantages, practical application remains elusive due to the mismatch between the short lifetime of the charge separation state (μs). This mismatch results in a significant portion of the photogenerated charges recombining before participating in desired electrochemical energy storage reactions, leading to diminished overall efficiency. It is therefore highly important to develop molecular materials with intrinsic prolonged charge separation state and extrinsic effective mass-electron transfer to enable efficient coupled solar batteries for practical applications.In this Account, we begin with an introduction of the general solar-to-electrochemical energy storage concept based on molecular photoelectrochemical energy storage materials, highlighting the advantages of periodic oxidative donor-reductive acceptor porous aggregate structures that have synergistic implications on charge separation state lifetime extension and mass-electron transfer. We then present our earliest trial on the design and application of molecular photoelectrochemical energy storage materials, which stimulated our subsequent studies on tuning electron donor and acceptor structures for enhanced charge separation and diverse photoelectrochemical redox reactions. Moreover, we introduce the best practices in the design and assembly of various coupled solar battery devices, along with our literature contributions and progresses in solar-to-electrochemical energy storage efficiency (η
科研通智能强力驱动
Strongly Powered by AbleSci AI