The Hiking Optimization Algorithm: A novel human-based metaheuristic approach

元启发式 计算机科学 并行元启发式 数学优化 算法 人工智能 数学 元优化
作者
Sunday O. Oladejo,Stephen O. Ekwe,Seyedali Mirjalili
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:296: 111880-111880 被引量:117
标识
DOI:10.1016/j.knosys.2024.111880
摘要

In this paper, a novel metaheuristic called 'The Hiking Optimization Algorithm' (HOA) is proposed. HOA is inspired by hiking, a popular recreational activity, in recognition of the similarity between the search landscapes of optimization problems and the mountainous terrains traversed by hikers. HOA's mathematical model is premised on Tobler's Hiking Function (THF), which determines the walking velocity of hikers (i.e. agents) by considering the elevation of the terrain and the distance covered. THF is employed in determining hikers' positions in the course of solving an optimization problem. HOA's performance is demonstrated by benchmarking with 29 well-known test functions (including unimodal, multimodal, fixed-dimension multimodal, and composite functions), three engineering design problems (EDPs), (including I-beam, tension/compression spring, and gear train problems) and two N-P Hard problems (i.e. Traveling Salesman's and Knapsack Problems). Moreover, HOA's results are verified by comparison to 14 other metaheuristics, including Teaching Learning Based Optimization (TLBO), Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization, Grey Wolf Optimizer (GWO) as well as newly introduced algorithms such as Komodo Mlipir Algorithm (KMA), Quadratic Interpolation Optimization (QIO), and Coronavirus Optimization Algorithm (COVIDOA). In this study, we employ statistical tests such as the Wilcoxon rank sum, Friedman test, and Dunn's post hoc test for the performance evaluation. HOA's results are competitive and, in many instances, outperform the aforementioned well-known metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ymjssg应助研友_ZAeR6Z采纳,获得10
刚刚
暗号完成签到,获得积分10
刚刚
刚刚
糟糕的豪发布了新的文献求助10
刚刚
刚刚
啦啦啦啦完成签到,获得积分10
1秒前
善学以致用应助zzzz采纳,获得10
1秒前
2秒前
2秒前
Yantuobio完成签到,获得积分10
2秒前
3秒前
3秒前
llq发布了新的文献求助10
3秒前
NexusExplorer应助贾硕士采纳,获得10
3秒前
乌鸦坐飞机完成签到,获得积分10
3秒前
4秒前
4秒前
胖头鱼发布了新的文献求助10
4秒前
科研通AI6应助三石呦423采纳,获得50
4秒前
11关注了科研通微信公众号
4秒前
candleshi发布了新的文献求助10
4秒前
luo发布了新的文献求助10
5秒前
5秒前
5秒前
忧伤的书白完成签到,获得积分10
5秒前
5秒前
赤壁完成签到,获得积分10
6秒前
6秒前
我是老大应助薯片采纳,获得10
6秒前
不可靠大人完成签到,获得积分10
7秒前
121发布了新的文献求助10
7秒前
7秒前
7秒前
iNk应助滚滚采纳,获得10
8秒前
无风发布了新的文献求助10
8秒前
fei应助生信好难采纳,获得20
8秒前
8秒前
大锤完成签到,获得积分10
8秒前
zzzz完成签到,获得积分20
9秒前
钟昊发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285