The Hiking Optimization Algorithm: A novel human-based metaheuristic approach

元启发式 计算机科学 并行元启发式 数学优化 算法 人工智能 数学 元优化
作者
Sunday O. Oladejo,Stephen O. Ekwe,Seyedali Mirjalili
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:296: 111880-111880 被引量:117
标识
DOI:10.1016/j.knosys.2024.111880
摘要

In this paper, a novel metaheuristic called 'The Hiking Optimization Algorithm' (HOA) is proposed. HOA is inspired by hiking, a popular recreational activity, in recognition of the similarity between the search landscapes of optimization problems and the mountainous terrains traversed by hikers. HOA's mathematical model is premised on Tobler's Hiking Function (THF), which determines the walking velocity of hikers (i.e. agents) by considering the elevation of the terrain and the distance covered. THF is employed in determining hikers' positions in the course of solving an optimization problem. HOA's performance is demonstrated by benchmarking with 29 well-known test functions (including unimodal, multimodal, fixed-dimension multimodal, and composite functions), three engineering design problems (EDPs), (including I-beam, tension/compression spring, and gear train problems) and two N-P Hard problems (i.e. Traveling Salesman's and Knapsack Problems). Moreover, HOA's results are verified by comparison to 14 other metaheuristics, including Teaching Learning Based Optimization (TLBO), Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization, Grey Wolf Optimizer (GWO) as well as newly introduced algorithms such as Komodo Mlipir Algorithm (KMA), Quadratic Interpolation Optimization (QIO), and Coronavirus Optimization Algorithm (COVIDOA). In this study, we employ statistical tests such as the Wilcoxon rank sum, Friedman test, and Dunn's post hoc test for the performance evaluation. HOA's results are competitive and, in many instances, outperform the aforementioned well-known metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默白柏发布了新的文献求助10
刚刚
香蕉觅云应助时年采纳,获得10
刚刚
abc完成签到,获得积分10
刚刚
正己化人应助ABBCCC采纳,获得10
1秒前
sweetpotato完成签到,获得积分10
1秒前
1秒前
1秒前
王智勇给王智勇的求助进行了留言
1秒前
1秒前
2秒前
思源应助平淡树叶采纳,获得10
2秒前
上官若男应助符雁采纳,获得10
3秒前
3秒前
熊本熊完成签到,获得积分10
3秒前
水流众生完成签到,获得积分10
3秒前
想有所成发布了新的文献求助10
4秒前
4秒前
sweetpotato发布了新的文献求助30
5秒前
小蘑菇应助yan采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
5秒前
5秒前
6秒前
负责的皮卡丘应助胡一菲采纳,获得10
6秒前
田様应助热心凡雁采纳,获得10
6秒前
7秒前
小马甲应助陆智杰采纳,获得10
7秒前
Snoopy发布了新的文献求助10
7秒前
科研通AI6应助安宁采纳,获得10
7秒前
uu完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI6应助Revovler采纳,获得10
9秒前
hui完成签到,获得积分10
9秒前
9秒前
温酒随行发布了新的文献求助10
9秒前
江江酱完成签到,获得积分10
10秒前
雅雅乐发布了新的文献求助10
10秒前
归尘发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072971
求助须知:如何正确求助?哪些是违规求助? 4293165
关于积分的说明 13377479
捐赠科研通 4114472
什么是DOI,文献DOI怎么找? 2252995
邀请新用户注册赠送积分活动 1257787
关于科研通互助平台的介绍 1190665