CNN -Enhanced Multi-Scale Graph Attention Network for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 模式识别(心理学) 图形 比例(比率) 计算机视觉 理论计算机科学 地图学 地理
作者
Z. Wang,Lu Li,Junfang Fan,Chen Wang,Jingyao Ma
标识
DOI:10.1145/3647649.3647664
摘要

In recent years, the utilization of both Graph Neural Network (GNN) and Convolutional Neural Network (CNN) in hyperspectral image (HSI) classification has gained significant attention. GNN, in particular, have proven effective in modelling irregular image regions. However, the limitations of single-scale graph structures and the focus on super-pixel nodes instead of pixel nodes within GNN hinder the extraction of pixel-level spectral-spatial features. To address these challenges and leverage the strengths of both CNN and GNN, we propose a novel heterogeneous deep network called CNN-Enhanced Multi-Scale Graph Attention Network (CEMSGAT). In CEMSGAT, we employ semi-supervised Local Fisher Discriminant Analysis (SELF) for dimensionality reduction and spectral-spatial convolution to extract surface features. Furthermore, our utilize super-pixel segmentation to create multi-scale graphs and implementing an improved graph attention algorithm at each scale to process the features obtained from the spectral-spatial convolutions. A spatial transformation operation is designed to enable seamless integration between the different scales of the graphs. Simultaneously, the features obtained from the previous spectral-spatial convolution are fed into a multilayer convolutional network for deep feature extraction and enhance the accuracy of the classification of connected areas between different land cover types calculated by the graph attention algorithm to achieve a clearer classification. Finally, the super-pixel level features derived from the multi-scale graph attention network are fused with the pixel level features obtained from the multilayer convolutional network for precise hyperspectral image classification. Experimental results on three hyperspectral datasets demonstrate the superiority of CEMSGAT over numerous state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易燃物品完成签到,获得积分10
刚刚
flac完成签到,获得积分10
2秒前
米奇的妙妙屋完成签到 ,获得积分10
2秒前
Mr_I完成签到,获得积分10
3秒前
BOSSJING完成签到,获得积分10
3秒前
liu完成签到,获得积分20
3秒前
majf发布了新的文献求助10
3秒前
mescal完成签到,获得积分10
3秒前
Welcome完成签到,获得积分10
4秒前
和和完成签到,获得积分10
5秒前
坚定青柏完成签到,获得积分10
6秒前
小灰灰完成签到 ,获得积分10
7秒前
RYAN完成签到 ,获得积分10
7秒前
秘小先儿应助海比天蓝采纳,获得10
8秒前
Zhusy完成签到 ,获得积分10
8秒前
8秒前
9秒前
自觉南风完成签到,获得积分10
9秒前
文静的白羊完成签到,获得积分10
9秒前
9秒前
Cuisine完成签到 ,获得积分10
9秒前
weven完成签到 ,获得积分10
10秒前
10秒前
11秒前
tivyg'lk完成签到,获得积分10
11秒前
xiaoyh96发布了新的文献求助10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
陈文娟发布了新的文献求助10
13秒前
yy完成签到,获得积分10
13秒前
小蘑菇应助淡定的美女采纳,获得10
13秒前
一直向前发布了新的文献求助10
15秒前
15秒前
zzx完成签到,获得积分10
15秒前
XF完成签到,获得积分10
15秒前
Ran-HT完成签到,获得积分10
15秒前
活力的招牌完成签到 ,获得积分10
15秒前
欢呼妙菱发布了新的文献求助10
17秒前
哈哈完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259