Using Drift Diffusion and RL Models to Disentangle Effects of Depression On Decision-Making vs. Learning in the Probabilistic Reward Task

心理学 重性抑郁障碍 任务(项目管理) 概率逻辑 复制 认知心理学 强化学习 临床心理学 机器学习 人工智能 计算机科学 统计 心情 管理 经济 数学
作者
Daniel G. Dillon,Emily L. Belleau,Julianne Origlio,Madison McKee,Aava Jahan,Ashley Meyer,Min Kang Souther,Devon Brunner,Manuel Kuhn,Yuen Siang Ang,Cristina Cusin,Maurizio Fava,Diego A. Pizzagalli
出处
期刊:Computational psychiatry [Ubiquity Press, Ltd.]
卷期号:8 (1) 被引量:1
标识
DOI:10.5334/cpsy.108
摘要

The Probabilistic Reward Task (PRT) is widely used to investigate the impact of Major Depressive Disorder (MDD) on reinforcement learning (RL), and recent studies have used it to provide insight into decision-making mechanisms affected by MDD. The current project used PRT data from unmedicated, treatment-seeking adults with MDD to extend these efforts by: (1) providing a more detailed analysis of standard PRT metrics—response bias and discriminability—to better understand how the task is performed; (2) analyzing the data with two computational models and providing psychometric analyses of both; and (3) determining whether response bias, discriminability, or model parameters predicted responses to treatment with placebo or the atypical antidepressant bupropion. Analysis of standard metrics replicated recent work by demonstrating a dependency between response bias and response time (RT), and by showing that reward totals in the PRT are governed by discriminability. Behavior was well-captured by the Hierarchical Drift Diffusion Model (HDDM), which models decision-making processes; the HDDM showed excellent internal consistency and acceptable retest reliability. A separate “belief” model reproduced the evolution of response bias over time better than the HDDM, but its psychometric properties were weaker. Finally, the predictive utility of the PRT was limited by small samples; nevertheless, depressed adults who responded to bupropion showed larger pre-treatment starting point biases in the HDDM than non-responders, indicating greater sensitivity to the PRT’s asymmetric reinforcement contingencies. Together, these findings enhance our understanding of reward and decision-making mechanisms that are implicated in MDD and probed by the PRT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
忆往昔完成签到,获得积分20
4秒前
4秒前
领导范儿应助讨厌桃子采纳,获得10
5秒前
5秒前
涂鸦战神完成签到,获得积分10
6秒前
hululu完成签到 ,获得积分10
6秒前
科研通AI6.1应助金帛心兑采纳,获得10
6秒前
6秒前
沉默海莲发布了新的文献求助30
7秒前
Liuying2809发布了新的文献求助10
8秒前
9秒前
三叶草完成签到,获得积分10
9秒前
10秒前
CodeCraft应助田田田采纳,获得10
10秒前
Lia完成签到,获得积分10
10秒前
11秒前
zoro完成签到,获得积分10
11秒前
12秒前
Yidie发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
乐乐应助失眠成协采纳,获得10
14秒前
14秒前
修越完成签到,获得积分10
14秒前
14秒前
kkkkkkkkk关注了科研通微信公众号
14秒前
abandon发布了新的文献求助10
15秒前
alooof发布了新的文献求助10
15秒前
香蕉觅云应助Lionel采纳,获得10
15秒前
zoro发布了新的文献求助10
16秒前
LXZ发布了新的文献求助30
17秒前
18秒前
18秒前
cc发布了新的文献求助10
18秒前
19秒前
19秒前
修越发布了新的文献求助10
19秒前
mo发布了新的文献求助30
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345