Using Drift Diffusion and RL Models to Disentangle Effects of Depression On Decision-Making vs. Learning in the Probabilistic Reward Task

心理学 重性抑郁障碍 任务(项目管理) 概率逻辑 复制 认知心理学 强化学习 临床心理学 机器学习 人工智能 计算机科学 统计 心情 管理 经济 数学
作者
Daniel G. Dillon,Emily L. Belleau,Julianne Origlio,Madison McKee,Aava Jahan,Ashley Meyer,Min Kang Souther,Devon Brunner,Manuel Kuhn,Yuen Siang Ang,Cristina Cusin,Maurizio Fava,Diego A. Pizzagalli
出处
期刊:Computational psychiatry [The MIT Press]
卷期号:8 (1) 被引量:1
标识
DOI:10.5334/cpsy.108
摘要

The Probabilistic Reward Task (PRT) is widely used to investigate the impact of Major Depressive Disorder (MDD) on reinforcement learning (RL), and recent studies have used it to provide insight into decision-making mechanisms affected by MDD. The current project used PRT data from unmedicated, treatment-seeking adults with MDD to extend these efforts by: (1) providing a more detailed analysis of standard PRT metrics—response bias and discriminability—to better understand how the task is performed; (2) analyzing the data with two computational models and providing psychometric analyses of both; and (3) determining whether response bias, discriminability, or model parameters predicted responses to treatment with placebo or the atypical antidepressant bupropion. Analysis of standard metrics replicated recent work by demonstrating a dependency between response bias and response time (RT), and by showing that reward totals in the PRT are governed by discriminability. Behavior was well-captured by the Hierarchical Drift Diffusion Model (HDDM), which models decision-making processes; the HDDM showed excellent internal consistency and acceptable retest reliability. A separate “belief” model reproduced the evolution of response bias over time better than the HDDM, but its psychometric properties were weaker. Finally, the predictive utility of the PRT was limited by small samples; nevertheless, depressed adults who responded to bupropion showed larger pre-treatment starting point biases in the HDDM than non-responders, indicating greater sensitivity to the PRT’s asymmetric reinforcement contingencies. Together, these findings enhance our understanding of reward and decision-making mechanisms that are implicated in MDD and probed by the PRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光轴发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
研友_Y59785应助狂野世立采纳,获得10
4秒前
1234完成签到,获得积分10
4秒前
777发布了新的文献求助10
5秒前
丫丫完成签到,获得积分10
5秒前
CipherSage应助998685采纳,获得10
5秒前
学术牛马完成签到,获得积分10
6秒前
丫丫发布了新的文献求助10
8秒前
momo应助1234采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
星辰大海应助任性小丸子采纳,获得10
11秒前
小马甲应助难过的远航采纳,获得10
11秒前
12秒前
稳重傲柔发布了新的文献求助10
13秒前
朴素的天蓝完成签到,获得积分10
13秒前
无心的星月完成签到,获得积分10
13秒前
13秒前
14秒前
998685完成签到,获得积分10
14秒前
Oo发布了新的文献求助50
14秒前
Winfred发布了新的文献求助10
15秒前
壮观梦凡发布了新的文献求助10
15秒前
静心完成签到,获得积分10
17秒前
18秒前
罗氏集团发布了新的文献求助10
18秒前
18秒前
ZWK发布了新的文献求助10
19秒前
cc完成签到,获得积分10
19秒前
情怀应助刚睡醒采纳,获得10
20秒前
顾矜应助MX001采纳,获得10
21秒前
zzzzzzzz应助zifeimo采纳,获得10
21秒前
一直向前发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014