Development and validation of a nomogram to predicting the efficacy of PD-1/PD-L1 inhibitors in patients with nasopharyngeal carcinoma

医学 列线图 队列 逻辑回归 接收机工作特性 内科学 一致性 肿瘤科 Lasso(编程语言) 鼻咽癌 曲线下面积 放射治疗 万维网 计算机科学
作者
Y Chen,Dubo Chen,Ruizhi Wang,Shuhua Xie,Xueping Wang,Hao Huang
出处
期刊:Clinical & Translational Oncology [Springer Nature]
标识
DOI:10.1007/s12094-024-03504-6
摘要

Abstract Purpose With the treatment of nasopharyngeal carcinoma (NPC) by PD-1/PD-L1 inhibitors used widely in clinic, it becomes very necessary to anticipate whether patients would benefit from it. We aimed to develop a nomogram to evaluate the efficacy of anti-PD-1/PD-L1 in NPC patients. Methods Totally 160 NPC patients were enrolled in the study. Patients were measured before the first PD-1/PD-L1 inhibitors treatment and after 8–12 weeks of immunotherapy by radiological examinations to estimate the effect. The least absolute shrinkage and selection operator (LASSO) logistic regression was used to screen hematological markers and establish a predictive model. The nomogram was internally validated by bootstrap resampling and externally validated. Performance of the model was evaluated using concordance index, calibration curve, decision curve analysis and receiver operation characteristic curve. Results Patients involved were randomly split into training cohort ang validation cohort. Based on Lasso logistic regression, systemic immune-inflammation index (SII) and ALT to AST ratio (LSR) were selected to establish a predictive model. The C-index of training cohort and validating cohort was 0.745 and 0.760. The calibration curves and decision curves showed the precise predictive ability of this nomogram. The benefit of the model showed in decision curve was better than TNM stage. The area under the curve (AUC) value of training cohort and validation cohort was 0.745 and 0.878, respectively. Conclusion The predictive model helped evaluating efficacy with high accuracy in NPC patients treated with PD-1/PD-L1 inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhongwei2284发布了新的文献求助10
刚刚
Gentleman完成签到,获得积分10
1秒前
呆萌的迪克完成签到,获得积分10
2秒前
luanzh完成签到,获得积分10
2秒前
shamy夫妇完成签到,获得积分10
2秒前
iehaoang完成签到 ,获得积分10
3秒前
lattercomer完成签到,获得积分10
3秒前
gao高完成签到,获得积分20
3秒前
慧子完成签到,获得积分10
4秒前
SI完成签到,获得积分10
5秒前
6秒前
6秒前
香菜完成签到 ,获得积分10
7秒前
张总可以的完成签到,获得积分20
8秒前
大模型应助boom采纳,获得10
8秒前
赘婿应助GuangliangGao采纳,获得10
8秒前
风滚草完成签到,获得积分10
9秒前
每天都要开心完成签到,获得积分10
9秒前
一头小眠羊完成签到,获得积分10
11秒前
昵称完成签到,获得积分10
12秒前
山椒发布了新的文献求助10
13秒前
领导范儿应助张总可以的采纳,获得10
13秒前
frank完成签到,获得积分10
14秒前
从容芮应助小蚊子采纳,获得20
14秒前
乐乐应助tkdzjr12345采纳,获得10
14秒前
万里完成签到,获得积分10
15秒前
十月的天空完成签到,获得积分10
16秒前
zzz完成签到 ,获得积分10
16秒前
无限小霜完成签到,获得积分10
17秒前
18秒前
务实数据线完成签到,获得积分10
18秒前
周周完成签到,获得积分20
18秒前
18秒前
大反应釜完成签到,获得积分10
18秒前
CipherSage应助22222采纳,获得10
19秒前
19秒前
肥而不腻的羚羊完成签到,获得积分0
19秒前
山椒完成签到,获得积分20
20秒前
zzzzz完成签到,获得积分10
20秒前
20秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169