已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MH2AFormer: An Efficient Multiscale Hierarchical Hybrid Attention With a Transformer for Bladder Wall and Tumor Segmentation

计算机科学 分割 人工智能 图像分割 变压器 膀胱肿瘤 计算机视觉 膀胱癌 医学 电压 工程类 癌症 内科学 电气工程
作者
Xiang Li,Jian Wang,Haifeng Wei,Jinyu Cong,Hongfu Sun,Pingping Wang,Benzheng Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4772-4784 被引量:1
标识
DOI:10.1109/jbhi.2024.3397698
摘要

Achieving accurate bladder wall and tumor segmentation from MRI is critical for diagnosing and treating bladder cancer. However, automated segmentation remains challenging due to factors such as comparable density distributions, intricate tumor morphologies, and unclear boundaries. Considering the attributes of bladder MRI images, we propose an efficient multiscale hierarchical hybrid attention with a transformer (MH2AFormer) for bladder cancer and wall segmentation. Specifically, a multiscale hybrid attention and transformer (MHAT) module in the encoder is designed to adaptively extract and aggregate multiscale hybrid feature representations from the input image. In the decoder stage, we devise a multiscale hybrid attention (MHA) module to generate high-quality segmentation results from multiscale hybrid features. Combining these modules enhances the feature representation and guides the model to focus on tumor and wall regions, which helps to solve bladder image segmentation challenges. Moreover, MHAT utilizes the Fast Fourier Transformer with a large kernel (e.g., 224 × 224) to model global feature relationships while reducing computational complexity in the encoding stage. The model performance was evaluated on two datasets. As a result, the model achieves relatively best results regarding the intersection over union (IoU) and dice similarity coefficient (DSC) on both datasets (Dataset A: IoU = 80.26%, DSC = 88.20%; Dataset B: IoU = 89.74%, DSC = 94.48%). These advantageous outcomes substantiate the practical utility of our approach, highlighting its potential to alleviate the workload of radiologists when applied in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv完成签到,获得积分10
刚刚
刚刚
4秒前
4秒前
HI完成签到 ,获得积分10
7秒前
7秒前
wyy发布了新的文献求助10
9秒前
境由心生发布了新的文献求助10
10秒前
10秒前
老仙翁发布了新的文献求助10
13秒前
wyy完成签到,获得积分10
14秒前
传奇3应助XXH采纳,获得10
16秒前
感动的醉波完成签到,获得积分10
17秒前
17秒前
20秒前
境由心生完成签到,获得积分10
23秒前
sherrydeyu发布了新的文献求助10
24秒前
Mr_Qz发布了新的文献求助10
24秒前
26秒前
28秒前
谨慎天问发布了新的文献求助10
30秒前
ldgsd完成签到,获得积分10
31秒前
66发布了新的文献求助10
33秒前
NexusExplorer应助sherrydeyu采纳,获得10
36秒前
谨慎天问完成签到,获得积分10
37秒前
无敌小宽哥完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
SciGPT应助66采纳,获得10
38秒前
丁鹏笑完成签到 ,获得积分0
41秒前
wanci应助齐嘉懿采纳,获得10
43秒前
桃铁完成签到,获得积分10
46秒前
51秒前
52秒前
54秒前
111完成签到,获得积分10
55秒前
22222发布了新的文献求助10
55秒前
ivy发布了新的文献求助30
55秒前
江河湖海完成签到 ,获得积分10
57秒前
齐嘉懿发布了新的文献求助10
57秒前
58秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024