MH2AFormer: An Efficient Multiscale Hierarchical Hybrid Attention with a Transformer for Bladder Wall and Tumor Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 编码器 图像分割 特征(语言学) 计算机视觉 语言学 操作系统 哲学
作者
Xiang Li,Jian Wang,Haifeng Wei,Jinyu Cong,Hongfu Sun,Pingping Wang,Benzheng Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3397698
摘要

Achieving accurate bladder wall and tumor segmentation from MRI is critical for diagnosing and treating bladder cancer. However, automated segmentation remains challenging due to factors such as comparable density distributions, intricate tumor morphologies, and unclear boundaries. Considering the attributes of bladder MRI images, we propose an efficient multiscale hierarchical hybrid attention with a transformer (MH2AFormer) for bladder cancer and wall segmentation. Specifically, a multiscale hybrid attention and transformer (MHAT) module in the encoder is designed to adaptively extract and aggregate multiscale hybrid feature representations from the input image. In the decoder stage, we devise a multiscale hybrid attention (MHA) module to generate high-quality segmentation results from multiscale hybrid features. Combining these modules enhances the feature representation and guides the model to focus on tumor and wall regions, which helps to solve bladder image segmentation challenges. Moreover, MHAT utilizes the Fast Fourier Transformer with a large kernel (e.g., 224 × 224) to model global feature relationships while reducing computational complexity in the encoding stage. The model performance was evaluated on two datasets. As a result, the model achieves relatively best results regarding the intersection over union (IoU) and dice similarity coefficient (DSC) on both datasets (Dataset A: IoU = 80.26%, DSC = 88.20%; Dataset B: IoU = 89.74%, DSC = 94.48%). These advantageous outcomes substantiate the practical utility of our approach, highlighting its potential to alleviate the workload of radiologists when applied in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GGGGGGGGGG发布了新的文献求助10
刚刚
刚刚
打打应助hhh采纳,获得10
1秒前
抓恐龙关注了科研通微信公众号
1秒前
碳点godfather完成签到,获得积分10
1秒前
ren完成签到,获得积分20
1秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
2秒前
TG_FY完成签到,获得积分10
2秒前
2秒前
hhh完成签到,获得积分10
2秒前
JamesPei应助诗轩采纳,获得10
3秒前
TT完成签到,获得积分10
4秒前
reck发布了新的文献求助10
4秒前
5秒前
DK发布了新的文献求助10
5秒前
英俊的铭应助ren采纳,获得10
5秒前
圈圈发布了新的文献求助10
5秒前
乐乱完成签到 ,获得积分10
6秒前
415484112完成签到,获得积分10
7秒前
yinyi发布了新的文献求助10
7秒前
7秒前
赵一丁完成签到,获得积分10
8秒前
成就绮琴完成签到 ,获得积分10
8秒前
Chen完成签到,获得积分10
8秒前
huanfid完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
Stitch完成签到 ,获得积分10
9秒前
9秒前
眯眯眼的冷珍完成签到,获得积分10
9秒前
bjyx完成签到,获得积分10
9秒前
reck完成签到,获得积分10
10秒前
pharmstudent发布了新的文献求助30
10秒前
小田完成签到,获得积分10
10秒前
小喵发布了新的文献求助10
11秒前
FashionBoy应助毛毛哦啊采纳,获得10
11秒前
Lucas应助Chen采纳,获得10
12秒前
强健的蚂蚁完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672