A Novel Improved Variational Mode Decomposition-Temporal Convolutional Network-Gated Recurrent Unit with Multi-Head Attention Mechanism for Enhanced Photovoltaic Power Forecasting

光伏系统 计算机科学 卷积神经网络 可再生能源 人工智能 循环神经网络 人工神经网络 数据挖掘 工程类 电气工程
作者
Hua Fu,Junnan Zhang,Sen Xie
出处
期刊:Electronics [MDPI AG]
卷期号:13 (10): 1837-1837 被引量:5
标识
DOI:10.3390/electronics13101837
摘要

Photovoltaic (PV) power forecasting plays a crucial role in optimizing renewable energy integration into the grid, necessitating accurate predictions to mitigate the inherent variability of solar energy generation. We propose a novel forecasting model that combines improved variational mode decomposition (IVMD) with the temporal convolutional network-gated recurrent unit (TCN-GRU) architecture, enriched with a multi-head attention mechanism. By focusing on four key environmental factors influencing PV output, the proposed IVMD-TCN-GRU framework targets a significant research gap in renewable energy forecasting methodologies. Initially, leveraging the sparrow search algorithm (SSA), we optimize the parameters of VMD, including the mode component K-value and penalty factor, based on the minimum envelope entropy principle. The optimized VMD then decomposes PV power, while the TCN-GRU model harnesses TCN’s proficiency in learning local temporal features and GRU’s capability in rapidly modeling sequence data, while leveraging multi-head attention to better utilize the global correlation information within sequence data. Through this design, the model adeptly captures the correlations within time series data, demonstrating superior performance in prediction tasks. Subsequently, the SSA is employed to optimize GRU parameters, and the decomposed PV power mode components and environmental feature attributes are inputted into the TCN-GRU neural network. This facilitates dynamic temporal modeling of multivariate feature sequences. Finally, the predicted values of each component are summed to realize PV power forecasting. Validation using real data from a PV station corroborates that the novel model demonstrates a substantial reduction in RMSE and MAE of up to 55.1% and 54.5%, respectively, particularly evident in instances of pronounced photovoltaic power fluctuations during inclement weather conditions. The proposed method exhibits marked improvements in accuracy compared to traditional PV power prediction methods, underscoring its significance in enhancing forecasting precision and ensuring the secure scheduling and stable operation of power systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz完成签到,获得积分10
1秒前
21完成签到 ,获得积分10
1秒前
fff123完成签到,获得积分10
1秒前
共享精神应助靓丽的安筠采纳,获得10
2秒前
搜集达人应助沉默的羔手采纳,获得10
2秒前
2秒前
2秒前
李昕123发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
善学以致用应助LPL采纳,获得20
5秒前
fff123发布了新的文献求助10
7秒前
8秒前
NexusExplorer应助coffeezzz采纳,获得10
8秒前
党旭龙发布了新的文献求助10
9秒前
栗子发布了新的文献求助10
10秒前
10秒前
小马甲应助3-HP采纳,获得10
11秒前
11秒前
12秒前
上官若男应助甜叶菊采纳,获得10
12秒前
13秒前
FLOR完成签到,获得积分10
14秒前
仁爱的自行车完成签到,获得积分20
15秒前
顾矜应助小飞侠采纳,获得30
15秒前
科研通AI2S应助七七采纳,获得10
15秒前
Fanny发布了新的文献求助10
16秒前
17秒前
zch曹县66完成签到,获得积分10
17秒前
17秒前
缓慢的初兰完成签到,获得积分10
17秒前
科研菜鸟完成签到,获得积分10
17秒前
18秒前
丘比特应助FLOR采纳,获得10
18秒前
19秒前
19秒前
NSS完成签到,获得积分10
20秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071500
求助须知:如何正确求助?哪些是违规求助? 2725527
关于积分的说明 7489890
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258220
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916