FCPFS: Fuzzy Granular Ball Clustering-Based Partial Multilabel Feature Selection With Fuzzy Mutual Information

人工智能 相互信息 模糊聚类 模糊逻辑 特征选择 聚类分析 模式识别(心理学) 球(数学) 粒度计算 数据挖掘 计算机科学 特征(语言学) 模糊集 数学 机器学习 粗集 数学分析 哲学 语言学
作者
Lin Sun,Qifeng Zhang,Weiping Ding,Tianxiang Wang,Jiucheng Xu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17
标识
DOI:10.1109/tetci.2024.3399665
摘要

In the partial multilabel learning, incorrect labels are annotated because of their low quality and poor recognition. To decrease secondary errors in partial multilabel classification, this paper proposes a novel fuzzy granular ball clustering-based partial multilabel feature selection scheme with fuzzy mutual information. First, to overcome the defect that the traditional granular ball model cannot be applied to partial multilabel classification and its splitting rules are anomalous and stochastic, an objective function is designed by the fuzzy membership degree, the splitting rules and termination conditions are redesigned, and a new fuzzy granular ball clustering method using fuzzy k -means can be developed to preprocess partial multilabel data. Second, to reduce the impact of noise labels, the instance set of each granular ball is generated according to fuzzy granular ball clustering instead of neighborhood class, and the fuzzy similarity relationship between instances is constructed. Subsequently, granular ball-based fuzzy entropy measures and fuzzy mutual information and their properties are proposed in granular ball-based partial multilabel systems. Finally, the dependence and relevance between features and label sets are studied, the significance of features based on fuzzy mutual information is presented, and then a heuristic partial multilabel feature selection method is constructed to enhance the effect of partial multilabel data classification. Experiments on 18 partial multilabel datasets illustrate the availability of our method compared to other multilabel classification algorithms in its classification effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Victor完成签到 ,获得积分10
2秒前
晴天发布了新的文献求助10
2秒前
灵巧文昊发布了新的文献求助10
6秒前
yvette发布了新的文献求助10
7秒前
科目三应助火星上鑫鹏采纳,获得20
8秒前
8秒前
9秒前
苏尔完成签到 ,获得积分10
11秒前
优秀爆米花完成签到,获得积分10
13秒前
大大大发布了新的文献求助10
13秒前
风夏完成签到,获得积分10
13秒前
14秒前
重要半兰发布了新的文献求助10
15秒前
猫小曼发布了新的文献求助10
16秒前
16秒前
20秒前
20秒前
小二郎应助自由的蛋挞采纳,获得10
22秒前
太阳完成签到,获得积分20
22秒前
lvqian发布了新的文献求助10
23秒前
Akim应助大大大采纳,获得10
24秒前
阿婆家的傻小子完成签到,获得积分10
25秒前
Lucas应助猫小曼采纳,获得10
27秒前
灵巧荆发布了新的文献求助10
27秒前
反卷队队长完成签到,获得积分10
29秒前
lvqian完成签到,获得积分20
30秒前
32秒前
liu66发布了新的文献求助10
32秒前
yvette完成签到 ,获得积分10
32秒前
eth完成签到 ,获得积分10
33秒前
汉堡包应助快去练采纳,获得10
34秒前
李健的小迷弟应助Yuan88采纳,获得10
35秒前
所所应助图书检索员采纳,获得10
35秒前
37秒前
39秒前
农夫完成签到,获得积分10
41秒前
42秒前
pluto应助liu66采纳,获得10
43秒前
大个应助扶苏在上采纳,获得10
43秒前
dolabmu完成签到 ,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3080354
求助须知:如何正确求助?哪些是违规求助? 2733117
关于积分的说明 7526931
捐赠科研通 2382128
什么是DOI,文献DOI怎么找? 1263212
科研通“疑难数据库(出版商)”最低求助积分说明 612225
版权声明 597498