FCPFS: Fuzzy Granular Ball Clustering-Based Partial Multilabel Feature Selection With Fuzzy Mutual Information

人工智能 相互信息 模糊聚类 模糊逻辑 特征选择 聚类分析 模式识别(心理学) 球(数学) 粒度计算 数据挖掘 计算机科学 特征(语言学) 模糊集 数学 机器学习 粗集 数学分析 语言学 哲学
作者
Lin Sun,Qifeng Zhang,Weiping Ding,Tianxiang Wang,Jiucheng Xu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 590-606 被引量:13
标识
DOI:10.1109/tetci.2024.3399665
摘要

In the partial multilabel learning, incorrect labels are annotated because of their low quality and poor recognition. To decrease secondary errors in partial multilabel classification, this paper proposes a novel fuzzy granular ball clustering-based partial multilabel feature selection scheme with fuzzy mutual information. First, to overcome the defect that the traditional granular ball model cannot be applied to partial multilabel classification and its splitting rules are anomalous and stochastic, an objective function is designed by the fuzzy membership degree, the splitting rules and termination conditions are redesigned, and a new fuzzy granular ball clustering method using fuzzy k -means can be developed to preprocess partial multilabel data. Second, to reduce the impact of noise labels, the instance set of each granular ball is generated according to fuzzy granular ball clustering instead of neighborhood class, and the fuzzy similarity relationship between instances is constructed. Subsequently, granular ball-based fuzzy entropy measures and fuzzy mutual information and their properties are proposed in granular ball-based partial multilabel systems. Finally, the dependence and relevance between features and label sets are studied, the significance of features based on fuzzy mutual information is presented, and then a heuristic partial multilabel feature selection method is constructed to enhance the effect of partial multilabel data classification. Experiments on 18 partial multilabel datasets illustrate the availability of our method compared to other multilabel classification algorithms in its classification effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
野生菜狗发布了新的文献求助10
1秒前
3秒前
李忆梦关注了科研通微信公众号
3秒前
123b发布了新的文献求助10
4秒前
内向如松发布了新的文献求助20
5秒前
5秒前
5秒前
joruruo完成签到,获得积分10
7秒前
7秒前
8秒前
wanghao发布了新的文献求助10
8秒前
YaRu完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
livialiu发布了新的文献求助10
10秒前
10秒前
spc68应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得30
11秒前
陆吉发布了新的文献求助10
11秒前
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
巧克李发布了新的文献求助10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
隐形曼青应助小饼干采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
Wayne发布了新的文献求助10
13秒前
科研通AI6应助Zhusy采纳,获得10
13秒前
淡定可乐发布了新的文献求助10
14秒前
XIAO完成签到,获得积分20
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577266
求助须知:如何正确求助?哪些是违规求助? 4662538
关于积分的说明 14742003
捐赠科研通 4603139
什么是DOI,文献DOI怎么找? 2526153
邀请新用户注册赠送积分活动 1496028
关于科研通互助平台的介绍 1465499