FCPFS: Fuzzy Granular Ball Clustering-Based Partial Multilabel Feature Selection With Fuzzy Mutual Information

人工智能 相互信息 模糊聚类 模糊逻辑 特征选择 聚类分析 模式识别(心理学) 球(数学) 粒度计算 数据挖掘 计算机科学 特征(语言学) 模糊集 数学 机器学习 粗集 数学分析 哲学 语言学
作者
Lin Sun,Qifeng Zhang,Weiping Ding,Tianxiang Wang,Jiucheng Xu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 590-606 被引量:13
标识
DOI:10.1109/tetci.2024.3399665
摘要

In the partial multilabel learning, incorrect labels are annotated because of their low quality and poor recognition. To decrease secondary errors in partial multilabel classification, this paper proposes a novel fuzzy granular ball clustering-based partial multilabel feature selection scheme with fuzzy mutual information. First, to overcome the defect that the traditional granular ball model cannot be applied to partial multilabel classification and its splitting rules are anomalous and stochastic, an objective function is designed by the fuzzy membership degree, the splitting rules and termination conditions are redesigned, and a new fuzzy granular ball clustering method using fuzzy k -means can be developed to preprocess partial multilabel data. Second, to reduce the impact of noise labels, the instance set of each granular ball is generated according to fuzzy granular ball clustering instead of neighborhood class, and the fuzzy similarity relationship between instances is constructed. Subsequently, granular ball-based fuzzy entropy measures and fuzzy mutual information and their properties are proposed in granular ball-based partial multilabel systems. Finally, the dependence and relevance between features and label sets are studied, the significance of features based on fuzzy mutual information is presented, and then a heuristic partial multilabel feature selection method is constructed to enhance the effect of partial multilabel data classification. Experiments on 18 partial multilabel datasets illustrate the availability of our method compared to other multilabel classification algorithms in its classification effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助sharp采纳,获得10
1秒前
谢丹完成签到 ,获得积分10
1秒前
kkk发布了新的文献求助10
1秒前
1秒前
草莓发布了新的文献求助10
1秒前
1秒前
2秒前
搞怪藏今完成签到 ,获得积分10
2秒前
苹果初阳完成签到,获得积分10
2秒前
3秒前
3秒前
乐乐应助大力的安阳采纳,获得30
4秒前
悦耳冰萍完成签到,获得积分10
4秒前
生动不平发布了新的文献求助10
4秒前
4秒前
LittleWang完成签到,获得积分10
4秒前
biowming完成签到,获得积分10
5秒前
5秒前
MgZn发布了新的文献求助10
6秒前
Mingyue123完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
碧蓝之柔完成签到,获得积分10
7秒前
方方土应助简简子采纳,获得80
7秒前
狗狗发布了新的文献求助200
7秒前
8秒前
8秒前
9秒前
9秒前
LLL发布了新的文献求助10
9秒前
9秒前
派3发布了新的文献求助10
10秒前
10秒前
朱良宇发布了新的文献求助10
10秒前
11秒前
睡觉专业户关注了科研通微信公众号
11秒前
112233445566发布了新的文献求助10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498