FCPFS: Fuzzy Granular Ball Clustering-Based Partial Multilabel Feature Selection With Fuzzy Mutual Information

人工智能 相互信息 模糊聚类 模糊逻辑 特征选择 聚类分析 模式识别(心理学) 球(数学) 粒度计算 数据挖掘 计算机科学 特征(语言学) 模糊集 数学 机器学习 粗集 数学分析 哲学 语言学
作者
Lin Sun,Qifeng Zhang,Weiping Ding,Tianxiang Wang,Jiucheng Xu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 590-606 被引量:13
标识
DOI:10.1109/tetci.2024.3399665
摘要

In the partial multilabel learning, incorrect labels are annotated because of their low quality and poor recognition. To decrease secondary errors in partial multilabel classification, this paper proposes a novel fuzzy granular ball clustering-based partial multilabel feature selection scheme with fuzzy mutual information. First, to overcome the defect that the traditional granular ball model cannot be applied to partial multilabel classification and its splitting rules are anomalous and stochastic, an objective function is designed by the fuzzy membership degree, the splitting rules and termination conditions are redesigned, and a new fuzzy granular ball clustering method using fuzzy k -means can be developed to preprocess partial multilabel data. Second, to reduce the impact of noise labels, the instance set of each granular ball is generated according to fuzzy granular ball clustering instead of neighborhood class, and the fuzzy similarity relationship between instances is constructed. Subsequently, granular ball-based fuzzy entropy measures and fuzzy mutual information and their properties are proposed in granular ball-based partial multilabel systems. Finally, the dependence and relevance between features and label sets are studied, the significance of features based on fuzzy mutual information is presented, and then a heuristic partial multilabel feature selection method is constructed to enhance the effect of partial multilabel data classification. Experiments on 18 partial multilabel datasets illustrate the availability of our method compared to other multilabel classification algorithms in its classification effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangmengcheng完成签到,获得积分10
1秒前
LL完成签到,获得积分10
2秒前
顾矜应助整齐醉冬采纳,获得10
2秒前
星野完成签到,获得积分10
2秒前
2秒前
3秒前
普通市民发布了新的文献求助10
3秒前
妩媚的海应助尕娃采纳,获得10
3秒前
smottom应助尕娃采纳,获得10
3秒前
fff完成签到,获得积分10
3秒前
充电宝应助齐齐采纳,获得10
4秒前
别绪叁仟完成签到 ,获得积分20
4秒前
4秒前
5秒前
超级丸子完成签到,获得积分10
5秒前
asdfzxcv应助虚幻的莞采纳,获得10
5秒前
阿咪哒发布了新的文献求助10
6秒前
隐形曼青应助aiya采纳,获得10
6秒前
科研通AI6应助sakyadamo采纳,获得200
6秒前
7秒前
Hello应助qiqiqi采纳,获得10
7秒前
科研通AI6应助王晓宇采纳,获得10
9秒前
9秒前
ying发布了新的文献求助10
10秒前
Adrenaline完成签到,获得积分10
10秒前
幸福遥发布了新的文献求助10
11秒前
11秒前
orixero应助张莜莜采纳,获得10
13秒前
友好的匪发布了新的文献求助10
13秒前
深情安青应助整齐醉冬采纳,获得10
13秒前
橙梨苹发布了新的文献求助10
14秒前
hdnej发布了新的文献求助10
15秒前
16秒前
蜚英腾茂完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
深情安青应助南枝焙雪采纳,获得10
19秒前
asdfzxcv应助潇洒的白凝采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513