Alveolar ridge resorption following tooth extraction poses significant challenges for future dental restorations. This study investigated the efficacy of fish scale-derived hydroxyapatite (FSHA) as a socket preservation graft material to maintain alveolar bone volume and architecture. FSHA was extracted from *Labeo rohita* fish scales and characterized using Fourier transform infrared (FTIR) analysis. In vitro, biocompatibility and osteogenic potential were assessed using Saos-2 human osteosarcoma cells. Cell viability, migration, and proliferation were evaluated using MTT and scratch assays. In vivo performance was assessed in a rat model, and FSHA was compared to a commercial xenograft (Osseograft) and ungrafted controls. Histological analysis was performed at 8-week post-implantation to quantify new bone formation. FTIR confirmed the purity and homogeneity of FSHA. In vitro, FSHA enhanced Saos-2 viability, migration, and proliferation compared to controls. In vivo, FSHA demonstrated superior bone regeneration compared to Osseograft and ungrafted sites, with balanced graft resorption and new bone formation. Histological analysis revealed an active incorporation of FSHA into new bone, with minimal gaps and ongoing remodeling. Approximately 50%-60% of FSHA was resorbed by 8 weeks, closely matching the rate of new bone deposition. FSHA stimulated more bone formation in the apical socket region than in coronal areas. In conclusion, FSHA is a promising biomaterial for alveolar ridge preservation, exhibiting excellent biocompatibility, osteogenic potential, and balanced resorption. Its ability to promote robust bone regeneration highlights its potential as an effective alternative to currently used graft materials in socket preservation procedures.