Seasonal waste, geotherm, nuclear, wood net power generations forecasting using a novel hybrid grey model with seasonally buffered and time-varying effect

地温梯度 环境科学 核能 废物管理 工程类 生态学 地质学 生物 地球物理学
作者
Xuemei Li,Yansong Shi,Yufeng Zhao,Yajie Wu,Shiwei Zhou
出处
期刊:Applied Energy [Elsevier]
卷期号:368: 123392-123392
标识
DOI:10.1016/j.apenergy.2024.123392
摘要

Seasonal volatility data is often disturbed by uncertain external shocks, making accurate forecasting particularly strenuous. This paper proposes a progressive adaptive prediction framework of data preprocessing, feature recognition, and seasonal prediction, namely SAWBO-TNGBM (1,1) model. Specifically, the seasonal full information variable weight weakening buffering operator is employed to effectively smooth the nonlinear fluctuation data. Furthermore, the grey Bernoulli model is extended by considering the time-varying effect, and Grey Wolf Optimization algorithm improves the overall prediction efficiency. Necessarily, the Convertibility, Unbiasedness, and Recursiveness are fully derived and proven, which undoubtedly improves the reliability and the ability to capture seasonal information. Empirically, from a data-driven perspective, US seasonal clean energy net generations with diverse fluctuating characteristics are utilized to validate the predicted performance, including quarterly series (waste, geotherm) and monthly series (nuclear, wood). Results obtained from comprehensive experimental comparative analyses show that the fitting ability of the SAWBO-TNGBM (1,1) model exceeds that of other models, demonstrating its flexibility, universality, and high precision. Lastly, innovative robustness testing and extended analysis ensure that the novel model provides an effective tool for seasonal forecasting in clean energy generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
JiaHui完成签到,获得积分10
3秒前
叮叮完成签到,获得积分10
3秒前
3秒前
你可真下饭完成签到,获得积分10
3秒前
ff发布了新的文献求助30
4秒前
4秒前
美好斓发布了新的文献求助10
4秒前
orangel完成签到,获得积分10
5秒前
缥缈冷亦发布了新的文献求助10
6秒前
6秒前
xiangqing完成签到 ,获得积分10
6秒前
ym完成签到,获得积分10
6秒前
iufan发布了新的文献求助10
7秒前
7秒前
释金松完成签到 ,获得积分10
7秒前
珊珊发布了新的文献求助10
8秒前
Akim应助smj采纳,获得10
8秒前
宋宋发布了新的文献求助10
8秒前
饱满破茧完成签到,获得积分10
9秒前
9秒前
天真幻珊完成签到 ,获得积分10
9秒前
pyyduck发布了新的文献求助10
9秒前
无限秋天完成签到 ,获得积分10
10秒前
jl驳回了Yziii应助
11秒前
11秒前
Jm完成签到,获得积分10
12秒前
zyc1111111完成签到,获得积分10
12秒前
唯一发布了新的文献求助10
12秒前
12秒前
woxiangtangping完成签到,获得积分10
13秒前
慕青应助缥缈冷亦采纳,获得10
14秒前
14秒前
英姑应助佳佳采纳,获得10
14秒前
cheng发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792