YOLOv10: Real-Time End-to-End Object Detection

端到端原则 计算机科学 死胡同 对象(语法) 人工智能 数学 几何学 流量(数学)
作者
Ao Wang,Hui Chen,Lihao Liu,Kai Chen,Zijia Lin,Jungong Han,Guiguang Ding
出处
期刊:Cornell University - arXiv 被引量:54
标识
DOI:10.48550/arxiv.2405.14458
摘要

Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YOLOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability. It renders the suboptimal efficiency, along with considerable potential for performance improvements. In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture. To this end, we first present the consistent dual assignments for NMS-free training of YOLOs, which brings competitive performance and low inference latency simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven model design strategy for YOLOs. We comprehensively optimize various components of YOLOs from both efficiency and accuracy perspectives, which greatly reduces the computational overhead and enhances the capability. The outcome of our effort is a new generation of YOLO series for real-time end-to-end object detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves state-of-the-art performance and efficiency across various model scales. For example, our YOLOv10-S is 1.8$\times$ faster than RT-DETR-R18 under the similar AP on COCO, meanwhile enjoying 2.8$\times$ smaller number of parameters and FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46\% less latency and 25\% fewer parameters for the same performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grapex完成签到,获得积分10
刚刚
JIAYU完成签到,获得积分20
刚刚
刚刚
研友_Z7WPwZ发布了新的文献求助10
刚刚
刚刚
VickyFocus发布了新的文献求助10
刚刚
刚刚
无私书雪完成签到,获得积分10
1秒前
Brain完成签到,获得积分10
1秒前
1秒前
zll关注了科研通微信公众号
2秒前
一杯美事发布了新的文献求助10
2秒前
2秒前
李健应助小董不懂采纳,获得10
3秒前
Owen应助敏敏采纳,获得10
3秒前
yuying完成签到 ,获得积分10
3秒前
yb123狮子发布了新的文献求助10
3秒前
张立佳完成签到,获得积分10
4秒前
5秒前
5秒前
unflycn发布了新的文献求助30
5秒前
5秒前
茶茶发布了新的文献求助10
5秒前
踏实若云发布了新的文献求助10
5秒前
青塘龙仔发布了新的文献求助10
6秒前
脑洞疼应助Mai采纳,获得10
6秒前
neurojie发布了新的文献求助10
7秒前
嘻嘻嘻发布了新的文献求助10
8秒前
香蕉觅云应助majf采纳,获得10
9秒前
9秒前
10秒前
wyg117发布了新的文献求助10
10秒前
10秒前
晴天关注了科研通微信公众号
10秒前
AAA发布了新的文献求助10
11秒前
踏实若云完成签到,获得积分10
11秒前
兴奋的天蓝完成签到,获得积分10
13秒前
13秒前
烟花应助梅川枯枝采纳,获得10
13秒前
香蕉觅云应助yb123狮子采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251