亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLOv10: Real-Time End-to-End Object Detection

端到端原则 计算机科学 死胡同 对象(语法) 人工智能 数学 几何学 流量(数学)
作者
Ao Wang,Hui Chen,Lihao Liu,Kai Chen,Zijia Lin,Jungong Han,Guiguang Ding
出处
期刊:Cornell University - arXiv 被引量:408
标识
DOI:10.48550/arxiv.2405.14458
摘要

Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YOLOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability. It renders the suboptimal efficiency, along with considerable potential for performance improvements. In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture. To this end, we first present the consistent dual assignments for NMS-free training of YOLOs, which brings competitive performance and low inference latency simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven model design strategy for YOLOs. We comprehensively optimize various components of YOLOs from both efficiency and accuracy perspectives, which greatly reduces the computational overhead and enhances the capability. The outcome of our effort is a new generation of YOLO series for real-time end-to-end object detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves state-of-the-art performance and efficiency across various model scales. For example, our YOLOv10-S is 1.8$\times$ faster than RT-DETR-R18 under the similar AP on COCO, meanwhile enjoying 2.8$\times$ smaller number of parameters and FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46\% less latency and 25\% fewer parameters for the same performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xpqiu完成签到,获得积分10
5秒前
orixero应助libob采纳,获得10
6秒前
慕青应助科研通管家采纳,获得30
7秒前
19秒前
20秒前
23秒前
佳佳发布了新的文献求助10
26秒前
39秒前
小鹿完成签到,获得积分10
42秒前
风趣煎蛋发布了新的文献求助10
43秒前
49秒前
风趣煎蛋完成签到,获得积分10
50秒前
小鹿发布了新的文献求助10
54秒前
57秒前
1分钟前
testmanfuxk完成签到,获得积分10
1分钟前
1分钟前
libob发布了新的文献求助10
1分钟前
1分钟前
思源应助zsp采纳,获得30
1分钟前
2分钟前
领导范儿应助556采纳,获得10
2分钟前
Persist6578完成签到 ,获得积分10
2分钟前
半城微凉应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
ljx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
fx完成签到 ,获得积分10
2分钟前
ZZICU完成签到,获得积分10
3分钟前
文献完成签到 ,获得积分10
3分钟前
3分钟前
义气的钥匙完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Jasper应助yyyalles采纳,获得30
3分钟前
3分钟前
556发布了新的文献求助10
3分钟前
556完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214