Detection of cucumber downy mildew spores based on improved YOLOv5s

霜霉病 孢子 古巴假孢霉 霉病 环境科学 生物 植物 工程类
作者
Qiao Chen,Kaiyu Li,Xinyi Zhu,Jiaping Jing,Wei Gao,Lingxian Zhang
出处
期刊:Information Processing in Agriculture [Elsevier]
被引量:1
标识
DOI:10.1016/j.inpa.2024.05.002
摘要

Cucumber downy mildew is caused by the infection of leaves with downy mildew spores. However, research on the prevention and control of cucumber downy mildew often focuses on the stage after symptoms have appeared on the leaves, that is, once disease spots have already formed. Since the occurrence of downy mildew is closely related to the quantity of spores, early-stage research on the quantity of downy mildew spores is of great significance for the prevention and control of cucumber downy mildew. Consequently, developing a rapid, accurate, and efficient method for detecting cucumber downy mildew spores is critical for advancing disease control. This study introduces an improved YOLOv5s model for spore detection. The model incorporates a transformer module into YOLOv5s's backbone, enhancing global feature information extraction. It also adds a small object detection head to counter YOLOv5s's extensive down-sampling and difficulty in learning features of small objects. Integration with the Convolutional Block Attention Module (CBAM) further refines detection precision for small objects like mildew spores. Upon evaluation with an image dataset collected through a microscope, the improved YOLOv5s model demonstrated superior performance metrics across various resolutions. At a resolution of 1440px × 1440px, it achieved the highest mean Average Precision ([email protected]) of 95.4 %, a precision (P) score of 89.1 %, and a recall (R) rate of 90.3 %. These metrics surpassed the original YOLOv5s model at the same 1440px × 1440px resolution by 1.6 % in [email protected], 1.6 % in P, and 0.5 % in R. Additionally, the model's [email protected] across various resolution scales indicates superior detection precision compared to other leading models like YOLOv7. In the context of microscopic images with small spores and complex backgrounds, the improved YOLOv5s model effectively detects cucumber downy mildew spores, offering valuable insights and technical support for advancing the prevention and control measures against cucumber downy mildew.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王珏珏完成签到,获得积分10
1秒前
Lliu完成签到,获得积分10
1秒前
燕子发布了新的文献求助30
2秒前
3秒前
3秒前
儒雅致远发布了新的文献求助10
3秒前
陈晨完成签到,获得积分10
3秒前
慕皓轩发布了新的文献求助10
4秒前
samantha完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
搜集达人应助阳先森采纳,获得10
6秒前
木木枭侠发布了新的文献求助10
6秒前
7秒前
8秒前
吃饱晒太阳的柑橘完成签到,获得积分10
9秒前
科研通AI6.1应助YangYang666采纳,获得10
9秒前
MS903发布了新的文献求助20
10秒前
10秒前
12秒前
13秒前
perovskite完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
斯文败类应助儒雅致远采纳,获得10
17秒前
KevinT应助科研通管家采纳,获得10
18秒前
spc68应助科研通管家采纳,获得10
18秒前
KevinT应助科研通管家采纳,获得10
18秒前
spc68应助科研通管家采纳,获得10
18秒前
spc68应助科研通管家采纳,获得10
18秒前
spc68应助科研通管家采纳,获得10
18秒前
spc68应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
spc68应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744595
求助须知:如何正确求助?哪些是违规求助? 5420782
关于积分的说明 15350455
捐赠科研通 4884794
什么是DOI,文献DOI怎么找? 2626158
邀请新用户注册赠送积分活动 1574922
关于科研通互助平台的介绍 1531745