光子学
实现(概率)
计算机科学
多模光纤
计算
炸薯条
电子工程
物理
光纤
光电子学
电信
工程类
算法
统计
数学
作者
Martin M. Stein,Tatsuhiro Onodera,Benjamin A. Ash,Mandar M. Sohoni,Melissa Bosch,Ryotatsu Yanagimoto,Marc Jankowski,Timothy P. McKenna,Tianyu Wang,Gennady Shvets,Maxim R. Shcherbakov,Logan G. Wright,Peter L. McMahon
摘要
On-chip photonic-neural-network processors promise benefits in both speed and energy efficiency but have not yet reached the scale to compete with electronic processors. The dominant paradigm is to build integrated-photonic processors using discrete components connected by single-mode waveguides. A far more compact alternative is to avoid discrete components and instead sculpt a complex and continuous microphotonic medium in which computations are performed by multimode waves controllably propagating in two dimensions. We show our realization of this approach with a device whose refractive index as a function of space can be rapidly reprogrammed. We demonstrate optical computations much larger and more error-resilient than previous photonic chips relying on discrete components. We argue that beyond photonic-neural-network processors, devices with such arbitrarily programmable index distributions enable the realization of a wide range of photonic functionality.
科研通智能强力驱动
Strongly Powered by AbleSci AI