Hierarchically porous carbon nanosheets derived from Bougainvillea petals with “pores-on-surface” structure for ultrahigh performance Zinc-ions hybrid capacitors

材料科学 纳米片 化学工程 电化学 碳纤维 碳化 阴极 纳米技术 比表面积 电极 复合材料 化学 有机化学 扫描电子显微镜 冶金 物理化学 催化作用 工程类 复合数
作者
Peng Liu,Fankai Kong,Hu Tang,Yueyang Wu,Xiao Xu,Jiwei Zhao,Xiao Liu,Zhewen Deng,Junjian Li,Siping Chen,Jizhao Zou,Jue Peng
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:491: 151944-151944 被引量:6
标识
DOI:10.1016/j.cej.2024.151944
摘要

Due to the outstanding electrochemical performance, high safety coefficient, controllable reaction system and low production cost, Zinc-ion hybrid capacitors (ZIHCs) is considered as a new generation of promising energy storage technology, which even seem as a suitable choice for Medical application. However, to produce ideal carbon-base cathode material with low cost and high electrochemical performance still face challenge. Here, we report a ZIHCs' cathode based on Bougainvillea petal-derived porous carbon nanosheets (Carbonized Bougainvillea activated at 850 °C, CB-3-850). CB-3-850 derived from Bougainvillea petals exhibit extremely an ultrahigh discharge capacity of 239.1 mAh g−1 at 0.5 A g−1 (from 0 V to 1.8 V) and an excellent electrochemical stability at 20 A g−1 (90 %, 10,000 cycles). In addition, ultrahigh energy density (213.4 Wh kg−1) and high power density (14.8 kW kg−1) are realized in CB-3-850. Special "pores-on-surface" structure and ultrathin nanosheet-like morphology of CB-3-850 not only provide a high specific surface area that for more Zn2+ and SO42+ absorbed on its surface but also enable ions across the one nanosheet directly to reach other carbon-sheets units, which realize a fast kinetic process of ions storage and higher capacity. The excellent performance of the Zinc-ion capacitor can be also attributed to N and O doping that strongly interacted with Zn2+ during the charge/discharge process. Finally, natural Bougainvillea petal just contains simple non-metal elements like C, N and O, exhibit high biocompatibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的盼晴完成签到,获得积分10
刚刚
RoyChen发布了新的文献求助10
1秒前
三好学生发布了新的文献求助10
1秒前
sbrcpyf发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
我唉科研完成签到,获得积分10
3秒前
legna发布了新的文献求助10
3秒前
fishhh完成签到,获得积分10
4秒前
大个应助有魅力的青荷采纳,获得10
4秒前
bkagyin应助骐骥采纳,获得10
4秒前
5秒前
咚巴拉啦完成签到,获得积分10
5秒前
wangjustb发布了新的文献求助10
5秒前
建成完成签到,获得积分10
5秒前
charm完成签到,获得积分10
5秒前
fleshout关注了科研通微信公众号
6秒前
hd发布了新的文献求助10
6秒前
鲤鱼十三完成签到 ,获得积分10
7秒前
7秒前
贲耷完成签到,获得积分10
7秒前
8秒前
Nininni完成签到,获得积分10
9秒前
weiyange完成签到,获得积分10
9秒前
完美世界应助卢lsl采纳,获得10
9秒前
10秒前
小狐有谋略完成签到,获得积分10
10秒前
makabaka发布了新的文献求助10
11秒前
零碎的岛屿应助HJJHJH采纳,获得10
11秒前
11秒前
LIN完成签到,获得积分10
12秒前
乐乐应助wakkkkk采纳,获得10
13秒前
Owen应助秀丽的慕灵采纳,获得10
13秒前
13秒前
13秒前
CipherSage应助rational采纳,获得10
14秒前
14秒前
胡乱说兔的熊完成签到,获得积分10
14秒前
陈宝妮完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552334
求助须知:如何正确求助?哪些是违规求助? 3128516
关于积分的说明 9378234
捐赠科研通 2827604
什么是DOI,文献DOI怎么找? 1554491
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714943