Environmentally adaptive fast object detection in UAV images

计算机视觉 计算机科学 人工智能 目标检测 对象(语法) 分割
作者
Mengmei Sang,Shengwei Tian,Yu Long,Guoqi Wang,Peng Yue
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:148: 105103-105103
标识
DOI:10.1016/j.imavis.2024.105103
摘要

Detecting objects in aerial images poses a challenging task due to the presence of numerous small objects and complex environmental information. To address these problems, we propose an efficient detector specifically designed for aerial images, named EAF-YOLOv8, based on YOLOv8-S. In this paper, we introduce a novel backbone network called EAFNet, specifically designed for small object detection. EAFNet consists of the Rapidly Merging Receptive Fields Aggregation Module (RMRFAM) and Multi-Scale Channel Attention (MSCA). The RMRFAM utilizes dilated convolution (DConv) and partial convolution (PConv) to acquire richer receptive fields, capturing more extensive contextual information at higher levels while reducing redundancy in channel information, thereby accelerating inference speed. Furthermore, inspired by denoising tasks, we focus on the feature information surrounding the target background and propose MSCA. MSCA integrates channel attention with an embedded self-attention feature pyramid, extending the feature learning scope to the surrounding environment of the target, beyond the target itself. This approach utilizes enhanced background features to elicit a higher response for small targets, reducing false positives. Experimental results demonstrate that in UAVDT and VisDrone2019, the proposed EAF-YOLOv8 achieves mAP50 scores of 34.3% and 49.7%, respectively. Additionally, EAF-YOLOv8 exhibits high real-time inference speeds of 77.60 FPS and 55.56 FPS, showcasing competitive detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助girl采纳,获得10
刚刚
刚刚
1秒前
猫南北完成签到,获得积分10
1秒前
江恋完成签到,获得积分10
4秒前
GGBOND发布了新的文献求助10
7秒前
9秒前
hhhblabla应助yyyyyyy111采纳,获得10
11秒前
哈哈发布了新的文献求助10
12秒前
17秒前
19秒前
背后初南完成签到,获得积分10
20秒前
神勇馒头完成签到,获得积分10
20秒前
GGBOND发布了新的文献求助10
21秒前
21秒前
22秒前
以戈完成签到,获得积分10
24秒前
26秒前
泡泡脑瓜发布了新的文献求助10
27秒前
358489228完成签到,获得积分10
27秒前
28秒前
xww发布了新的文献求助10
30秒前
31秒前
神勇馒头发布了新的文献求助10
34秒前
34秒前
chen完成签到,获得积分10
36秒前
cindywu发布了新的文献求助10
36秒前
贰叁发布了新的文献求助10
37秒前
38秒前
量子星尘发布了新的文献求助10
39秒前
40秒前
Lu发布了新的文献求助10
42秒前
43秒前
泡泡脑瓜关注了科研通微信公众号
44秒前
丫丫丫完成签到,获得积分20
45秒前
无花果应助GGBOND采纳,获得10
45秒前
跳跃盼波完成签到,获得积分10
47秒前
喜悦松完成签到,获得积分10
48秒前
666完成签到,获得积分10
48秒前
Jessica完成签到,获得积分10
51秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105