Synergetic Ni–Ce Active Sites in Mixed Cerium/Zirconium Metal–Organic Framework Nodes for Selective Methane Oxidation into Ethanol

甲烷 金属有机骨架 催化作用 乙醇 无机化学 金属 化学 材料科学 有机化学 吸附
作者
Wahida Begum,Manav Chauhan,Rahul Kalita,Poorvi Gupta,Naved Akhtar,Neha Antil,Rajashree Newar,Kuntal Manna
出处
期刊:ACS Catalysis 卷期号:14 (14): 10427-10436 被引量:4
标识
DOI:10.1021/acscatal.4c02883
摘要

The direct oxidation of methane into ethanol with high productivity under mild conditions is a grand challenge. We report the development of mixed cerium/zirconium metal–organic framework (MOF) nodes-supported mononuclear nickel(II)-hydroxyl species [Cex/Zry–UiO–Ni(OH)] as efficient heterogeneous catalysts for direct transformation of methane into ethanol. The Ni2+ ion in Cex/Zry–UiO–Ni(OH) MOFs coordinates with a μ4–O–, one hydroxy group, and two neutral carboxylate oxygens, which are directly bonded to the Ce4+ ion at the mixed metal-oxo nodes. The spectroscopic and control experiments and theoretical calculations reveal that the precise composition of the mixed-metal node, the isolation of mono Ni-hydroxyl species at the node, and the cooperative Ni–Ce active sites confined within the porous UiO-MOFs promote the facile C–H activation of methane at 80 °C, leading to the formation of •CH3 radicals and subsequent C–C coupling within the pores to produce ethanol in an extraordinarily high yield of 6521 mmol gNi–1 with >93% selectivity, outperforming most of the current reports. Our mechanistic investigation suggests that the direct methane oxidation into ethanol proceeds via a dual catalytic cycle, in which the doping of Ce4+ ion within MOF's node and the proximity between Ce4+ and Ni2+ ions lead to the reversible Ce–Ocarboxylate bond dissociation and Ni–(μ2–OH)–Ce bond formation, which is the key for efficient formation of •CH3 radical in the turnover limiting step. This work highlights the importance of mixed metal-MOFs in designing well-defined heterobimetallic-supported catalysts for the valorization of methane and light alkanes via cooperative catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的信封完成签到,获得积分10
刚刚
CipherSage应助wu采纳,获得10
刚刚
科目三应助震666采纳,获得30
刚刚
April发布了新的文献求助10
1秒前
加菲丰丰应助猫橘汽水采纳,获得30
1秒前
阳光海云完成签到,获得积分10
1秒前
2秒前
攒一口袋星星完成签到,获得积分10
2秒前
alwry完成签到,获得积分10
2秒前
eyebrow完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
小胖鱼完成签到,获得积分20
3秒前
Grayball应助啊这啥啊这是采纳,获得10
4秒前
cf完成签到,获得积分10
4秒前
王一线完成签到,获得积分10
5秒前
5秒前
5秒前
栗子完成签到,获得积分10
5秒前
bkagyin应助格格星采纳,获得10
6秒前
Youdge完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
yyf发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
Mian发布了新的文献求助10
8秒前
完美世界应助张静静采纳,获得10
8秒前
wu完成签到,获得积分10
8秒前
朴素的书琴完成签到,获得积分10
9秒前
dai完成签到,获得积分10
9秒前
务实大船发布了新的文献求助10
9秒前
四夕水窖完成签到,获得积分10
10秒前
FashionBoy应助曾经的臻采纳,获得10
10秒前
白白发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740