Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (6): 664-672 被引量:15
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingyi完成签到,获得积分10
刚刚
活力的念蕾完成签到,获得积分10
刚刚
yygz0703完成签到 ,获得积分10
1秒前
2秒前
lxz发布了新的文献求助10
2秒前
xxd发布了新的文献求助10
3秒前
甜蜜的曼梅完成签到,获得积分10
3秒前
欣慰的书本完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
归尘发布了新的文献求助10
6秒前
自觉从筠发布了新的文献求助10
7秒前
高高保温杯完成签到,获得积分10
8秒前
今后应助xxd采纳,获得10
9秒前
小白完成签到,获得积分10
9秒前
不开心我的完成签到,获得积分20
10秒前
10秒前
酵母君完成签到,获得积分10
10秒前
中小药完成签到,获得积分10
11秒前
12秒前
15秒前
15秒前
CodeCraft应助酵母君采纳,获得10
16秒前
阳光翩跹完成签到 ,获得积分10
16秒前
16秒前
李li完成签到,获得积分10
18秒前
18秒前
Aypnia发布了新的文献求助10
19秒前
19秒前
20秒前
北过完成签到,获得积分10
21秒前
元谷雪发布了新的文献求助10
21秒前
22秒前
buno应助can采纳,获得10
23秒前
24秒前
nakl完成签到,获得积分10
24秒前
25秒前
25秒前
04liqian发布了新的文献求助10
25秒前
茶茶完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867