Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (6): 664-672 被引量:15
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meng发布了新的文献求助10
刚刚
刚刚
thesky发布了新的文献求助10
1秒前
orixero应助啊实打实的采纳,获得10
1秒前
Owen应助lucky采纳,获得10
1秒前
流露完成签到,获得积分10
1秒前
奶昔发布了新的文献求助10
1秒前
王泽坤发布了新的文献求助10
1秒前
大个应助123456采纳,获得20
2秒前
小蘑菇应助紧张的世德采纳,获得10
2秒前
2秒前
Silhouette发布了新的文献求助10
3秒前
Qin发布了新的文献求助10
3秒前
3秒前
王KKK发布了新的文献求助10
4秒前
YY完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
科研小子完成签到,获得积分10
6秒前
发顶刊发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
xueshu发布了新的文献求助10
7秒前
thesky完成签到,获得积分10
8秒前
dx完成签到,获得积分10
8秒前
8秒前
Clover04发布了新的文献求助10
9秒前
9秒前
琦琦完成签到,获得积分10
9秒前
9秒前
la完成签到,获得积分10
9秒前
平常翩跹完成签到 ,获得积分20
9秒前
10秒前
科研通AI6应助冷冷子采纳,获得10
10秒前
logen发布了新的文献求助10
10秒前
妩媚的海应助fff采纳,获得50
10秒前
大炮弹发布了新的文献求助10
10秒前
10秒前
自行车v完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401