Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:6 (6): 664-672 被引量:3
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的之桃完成签到 ,获得积分10
刚刚
1秒前
所所应助lieven采纳,获得10
2秒前
ztlooo发布了新的文献求助10
2秒前
CipherSage应助跳跃的含双采纳,获得10
3秒前
4秒前
liu发布了新的文献求助10
4秒前
5秒前
zzl发布了新的文献求助10
5秒前
科研通AI5应助尘林采纳,获得30
5秒前
所所应助fl采纳,获得10
5秒前
直率芮发布了新的文献求助10
6秒前
hyhyhyhy发布了新的文献求助10
6秒前
小马甲应助Ana采纳,获得10
7秒前
阿尔法贝塔完成签到 ,获得积分10
8秒前
Harlotte发布了新的文献求助10
8秒前
可爱的函函应助狂野世立采纳,获得10
8秒前
ANZIMO发布了新的文献求助10
10秒前
科研通AI5应助nvwu采纳,获得10
10秒前
qq完成签到,获得积分10
10秒前
科研通AI5应助大聪明采纳,获得10
10秒前
LZJ完成签到,获得积分10
11秒前
小诗人完成签到,获得积分10
12秒前
科研通AI5应助hyhyhyhy采纳,获得10
12秒前
今天只做一件事应助zzx采纳,获得10
12秒前
13秒前
13秒前
情怀应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得30
14秒前
8R60d8应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
8R60d8应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
8R60d8应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
苹果可燕应助科研通管家采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769018
求助须知:如何正确求助?哪些是违规求助? 3314015
关于积分的说明 10170296
捐赠科研通 3028944
什么是DOI,文献DOI怎么找? 1662218
邀请新用户注册赠送积分活动 794750
科研通“疑难数据库(出版商)”最低求助积分说明 756372