Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (6): 664-672 被引量:6
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
puritan完成签到 ,获得积分10
刚刚
gincle完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
瓜瓜瓜完成签到 ,获得积分10
4秒前
迈克老狼完成签到 ,获得积分10
11秒前
2025迷完成签到 ,获得积分10
15秒前
ycd完成签到,获得积分10
19秒前
洗衣液谢完成签到 ,获得积分10
20秒前
ypres完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
zzz完成签到,获得积分10
27秒前
静静完成签到 ,获得积分10
27秒前
neversay4ever完成签到 ,获得积分10
31秒前
gnil完成签到,获得积分10
33秒前
刘玲完成签到 ,获得积分10
38秒前
ChatGPT发布了新的文献求助10
47秒前
hi小豆完成签到 ,获得积分10
52秒前
红毛兔完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
54秒前
wuyyuan完成签到 ,获得积分10
57秒前
小刘同学完成签到,获得积分10
59秒前
clxgene完成签到,获得积分10
1分钟前
XXGG完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
star完成签到,获得积分10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高雍发布了新的文献求助10
1分钟前
1分钟前
天天开心完成签到 ,获得积分0
1分钟前
111完成签到 ,获得积分10
1分钟前
wuqs发布了新的文献求助10
1分钟前
1分钟前
久晓完成签到 ,获得积分10
1分钟前
LIJIngcan完成签到 ,获得积分10
1分钟前
笑点低的铁身完成签到 ,获得积分10
1分钟前
1分钟前
持卿应助ceeray23采纳,获得30
1分钟前
我很好完成签到 ,获得积分10
1分钟前
现代小丸子完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615564
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575