Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (6): 664-672 被引量:6
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名子完成签到 ,获得积分10
刚刚
TayBob完成签到,获得积分10
1秒前
ChenChen完成签到,获得积分10
1秒前
莫封叶完成签到,获得积分10
2秒前
可乐加冰完成签到,获得积分10
2秒前
英姑应助我就是歌手采纳,获得10
2秒前
Mr鹿完成签到,获得积分10
2秒前
隐形曼青应助刘白告采纳,获得10
3秒前
科研通AI6应助苏silence采纳,获得10
3秒前
Orange应助Jincen采纳,获得10
3秒前
之之完成签到,获得积分10
3秒前
4秒前
大角牛完成签到,获得积分10
4秒前
希望天下0贩的0应助under采纳,获得10
4秒前
4秒前
欣喜雅香完成签到,获得积分10
4秒前
爆米花应助高大的千秋采纳,获得10
4秒前
文献互助完成签到,获得积分10
5秒前
5秒前
与你完成签到 ,获得积分20
5秒前
量子星尘发布了新的文献求助20
6秒前
Keven发布了新的文献求助10
6秒前
李佳完成签到,获得积分20
6秒前
李光辉完成签到,获得积分20
6秒前
7秒前
mou完成签到,获得积分10
7秒前
大力的向日葵完成签到,获得积分10
7秒前
研友_V8QE78完成签到,获得积分10
8秒前
8秒前
8秒前
Astrid完成签到,获得积分10
9秒前
炸鸡加热发布了新的文献求助10
9秒前
xiaobai发布了新的文献求助10
9秒前
9秒前
10秒前
忐忑的以旋完成签到,获得积分10
10秒前
terrell完成签到,获得积分10
10秒前
小畅发布了新的文献求助10
10秒前
CipherSage应助愉快又莲采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977