Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (6): 664-672 被引量:6
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助小天才完成签到,获得积分10
1秒前
zhou完成签到,获得积分10
1秒前
聪明藏今完成签到,获得积分10
1秒前
玩命的凝天完成签到,获得积分10
1秒前
深海soda完成签到,获得积分10
3秒前
甜蜜曼凝完成签到,获得积分10
3秒前
1111发布了新的文献求助10
3秒前
4秒前
守门人完成签到,获得积分10
4秒前
小满完成签到 ,获得积分10
5秒前
6秒前
lisa完成签到,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI6应助小鱼采纳,获得10
11秒前
11秒前
sxw完成签到 ,获得积分10
11秒前
吴青发布了新的文献求助10
13秒前
13秒前
呆萌念云完成签到 ,获得积分10
13秒前
大方大船完成签到,获得积分10
14秒前
16秒前
Z_mzse完成签到,获得积分10
16秒前
聪明凡之应助冷静新烟采纳,获得10
17秒前
马上有钱完成签到,获得积分10
17秒前
COY66发布了新的文献求助20
17秒前
科研通AI6应助Zhj采纳,获得10
18秒前
19秒前
19秒前
20秒前
20秒前
笑点低的咖啡完成签到,获得积分10
22秒前
22秒前
马上有钱发布了新的文献求助10
24秒前
筝zheng完成签到,获得积分10
24秒前
linkin发布了新的文献求助10
24秒前
Owen应助elephantknight采纳,获得10
24秒前
i1发布了新的文献求助10
24秒前
郝誉发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597169
求助须知:如何正确求助?哪些是违规求助? 4682435
关于积分的说明 14826266
捐赠科研通 4659721
什么是DOI,文献DOI怎么找? 2536464
邀请新用户注册赠送积分活动 1504138
关于科研通互助平台的介绍 1470139