Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:6 (6): 664-672 被引量:4
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝莓酱蘸橘子完成签到 ,获得积分10
1秒前
pal0009发布了新的文献求助30
1秒前
凡凡发布了新的文献求助10
1秒前
3秒前
阔达的惠完成签到,获得积分10
3秒前
沉静胜完成签到,获得积分10
4秒前
多情青螃蟹关注了科研通微信公众号
5秒前
安安爱阎魔完成签到,获得积分10
5秒前
在水一方应助www采纳,获得10
7秒前
李麟发布了新的文献求助10
8秒前
8秒前
8秒前
小二郎应助浩哥要strong采纳,获得10
8秒前
ao20000106发布了新的文献求助10
9秒前
七月完成签到 ,获得积分10
10秒前
呆呆鱼发布了新的文献求助10
10秒前
zeyin完成签到,获得积分10
10秒前
LIZHI完成签到 ,获得积分10
11秒前
zrx完成签到,获得积分20
12秒前
luwanqing发布了新的文献求助10
12秒前
13秒前
海德堡发布了新的文献求助10
13秒前
13秒前
小崔读研完成签到 ,获得积分10
13秒前
14秒前
pluto应助詹姆斯哈登采纳,获得50
15秒前
一直发布了新的文献求助10
16秒前
16秒前
领导范儿应助郭小宝采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
知许解夏应助科研通管家采纳,获得10
17秒前
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
Lane_Crumus应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403